Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 3: 16098, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580168

RESUMO

Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum (ER) protein that functions, along with WRB and TRC40, to mediate tail-anchored (TA) protein insertion into the ER membrane. Physiologic roles for CAML include endocytic trafficking, intracellular calcium signaling, and the survival and proliferation of specialized immune cells, recently attributed to its requirement for TA protein insertion. To identify a possible role for CAML in cancer cells, we generated Eµ-Myc transgenic mice that carry a tamoxifen-inducible deletion allele of Caml. In multiple B-cell lymphoma cell lines derived from these mice, homozygous loss of Caml activated apoptosis. Cell death was blocked by Bcl-2/Bcl-xL overexpression; however, rescue from apoptosis was insufficient to restore proliferation. Tumors established from an Eµ-Myc lymphoma cell line completely regressed after tamoxifen administration, suggesting that CAML is also required for these cancer cells to survive and grow in vivo. Cell cycle analyses of Caml-deleted lymphoma cells revealed an arrest in G2/M, accompanied by low expression of the mitotic marker, phospho-histone H3 (Ser10). Surprisingly, lymphoma cell viability did not depend on the domain of CAML required for its interaction with TRC40. Furthermore, a small protein fragment consisting of the C-terminal 111 amino acid residues of CAML, encompassing the WRB-binding domain, was sufficient to rescue growth and survival of Caml-deleted lymphoma cells. Critically, this minimal region of CAML did not restore TA protein insertion in knockout cells. Taken together, these data reveal an essential role for CAML in supporting survival and mitotic progression in Myc-driven lymphomas that is independent of its TA protein insertion function.

2.
J Immunol ; 195(12): 5648-56, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561552

RESUMO

Calcium-modulating cyclophilin ligand (CAML) is an endoplasmic reticulum resident protein that is widely expressed. Although it has been demonstrated to participate in the tail-anchored protein insertion pathway, its physiological role in the mature immune system is unknown. In this work, we show that mature, peripheral T cells require CAML for survival specifically following TCR-induced activation. In this study, we examined mature T cells from spleen and lymph nodes of tamoxifen-inducible CAML knockout mice (tCAML(-/-)). Whereas CAML-deficient T cells were able to express the early activation markers CD25 and CD69, and produce IL-2 normally upon stimulation, deficient cells proliferated less and died. Cells did not require CAML for entry into the S phase of the cell cycle, thus implicating its survival function at a relatively late step in the T cell activation sequence. In addition, CAML was required for homeostatic proliferation and for Ag-dependent cell killing in vivo. These results demonstrate that CAML critically supports T cell survival and cell division downstream of T cell activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Ciclofilinas/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Sobrevivência Celular , Células Cultivadas , Ligantes , Ativação Linfocitária , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia
3.
J Immunol ; 188(7): 3009-18, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22351938

RESUMO

Calcium-modulating cyclophilin ligand (CAML) is a ubiquitously expressed protein that is important during thymopoiesis. However, whether it serves a function in mature lymphocytes is unknown. In this article, we show that CAML is essential for survival of peripheral follicular (Fo) B cells. Conditional deletion of CAML in CD19-Cre transgenic mice caused a significant reduction in Fo cell numbers and increased rates of homeostatic proliferation. CAML-deficient Fo cells showed increased cellular turnover and normal proliferative ability. Although CAML-deficient Fo cells responded to AgR stimulation and to B cell activating factor, they displayed decreased survival and increased apoptosis following stimulation with LPS and IL-4 in vitro. Failure to survive was not due to aberrant B cell development in the absence of CAML, because induced deletion of the gene in mature cells resulted in a similar phenotype. These data establish an essential and ongoing role for CAML in the long-term survival of mature B cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Subpopulações de Linfócitos B/imunologia , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Apoptose/efeitos dos fármacos , Fator Ativador de Células B/farmacologia , Sobrevivência Celular , Homeostase , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Linfonodos/imunologia , Linfonodos/ultraestrutura , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Receptores de Antígenos de Linfócitos B/imunologia , Organismos Livres de Patógenos Específicos , Baço/citologia , Baço/imunologia
4.
PLoS Genet ; 5(12): e1000750, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19997487

RESUMO

Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.


Assuntos
Ciclofilinas/deficiência , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Animais , Tamanho Corporal , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/patologia , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Ciclofilinas/metabolismo , Proteínas da Matriz Extracelular , Células HeLa , Humanos , Cifose/complicações , Cifose/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Chaperonas Moleculares , Osteogênese Imperfeita/complicações , Fenótipo , Ligação Proteica , Transporte Proteico , Proteínas/metabolismo , Proteoglicanas/metabolismo , Anormalidades da Pele/patologia
5.
Cell Cycle ; 8(6): 940-9, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19229138

RESUMO

Calcium modulating cyclophilin ligand (CAML) is a ubiquitously expressed cytoplasmic protein that is implicated in the EGFR and LCK signaling pathways and required for early embryonic and thymocyte development. To further define the critical biological functions of CAML at the cellular level, we generated CAML-deleted mouse embryonic fibroblasts (MEFs) using an in vitro Cre-loxP mediated conditional knockout system. We found that CAML(-/-) MEFs have severely impaired proliferation and a strong reduction of normal anaphases. The primary mitotic defect of CAML(-/-) MEFs is that duplicated chromosomes fail to segregate in anaphase, resulting in nuclear bisection by the cleavage furrow as cells decondense their DNA and exit mitosis, highly reminiscent of the "cut" phenotype in fission yeast. This phenotype is due to spindle dysfunction rather than inability to resolve physical connections between sister chromatids. Furthermore, CAML(-/-) MEFs display defects often seen in cells with mitotic checkpoint gene deficiencies, including lagging and misaligned chromosomes and chromatin bridges. Consistent with this, we found that CAML(-/-) MEFs have a modestly weakened spindle assembly checkpoint (SAC) and increased aneuploidy. Thus, our data identify CAML as a novel chromosomal instability gene and suggest that CAML protein acts as a key regulator of mitotic spindle function and a modulator of SAC maintenance.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anáfase/genética , Instabilidade Cromossômica/genética , Segregação de Cromossomos/genética , Fuso Acromático/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Camundongos , Fuso Acromático/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...