Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 197: 115663, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897967

RESUMO

Radioactive cesium (137Cs) is distributed in the world's oceans as a result of global fallout from atmospheric nuclear weapons tests, releases from fuel reprocessing plants, and inputs from nuclear power plant accident. In order to detect future radionuclide contamination, it is necessary to establish a baseline global distribution of radionuclides such as 137Cs and to understand the ocean transport processes that lead to that distribution. In order to aid in the interpretation of the observed database, we have conducted a suite of simulations of the distribution of 137Cs using a global ocean general circulation model (OGCM). Simulated 137Cs radioactivity concentrations agree well with observations, and the results were used to estimate the changes in inventories for each ocean basin. 137Cs activity concentration from atmospheric nuclear weapons tests are expected to be detectable in the world ocean until at least 2030.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Oceanos e Mares , Radioisótopos de Césio/análise , Japão , Oceano Pacífico
2.
Global Biogeochem Cycles ; 35(9): e2021GB007034, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35860341

RESUMO

Earth system models are intended to make long-term projections, but they can be evaluated at interannual and seasonal time scales. Although the Community Earth System Model (CESM2) showed improvements in a number of terrestrial carbon cycle benchmarks, relative to its predecessor, our analysis suggests that the interannual variability (IAV) in net terrestrial carbon fluxes did not show similar improvements. The model simulated low IAV of net ecosystem production (NEP), resulting in a weaker than observed sensitivity of the carbon cycle to climate variability. Low IAV in net fluxes likely resulted from low variability in gross primary productivity (GPP)-especially in the tropics-and a high covariation between GPP and ecosystem respiration. Although lower than observed, the IAV of NEP had significant climate sensitivities, with positive NEP anomalies associated with warmer and drier conditions in high latitudes, and with wetter and cooler conditions in mid and low latitudes. We identified two dominant modes of seasonal variability in carbon cycle flux anomalies in our fully coupled CESM2 simulations that are characterized by seasonal amplification and redistribution of ecosystem fluxes. Seasonal amplification of net and gross carbon fluxes showed climate sensitivities mirroring those of annual fluxes. Seasonal redistribution of carbon fluxes is initiated by springtime temperature anomalies, but subsequently negative feedbacks in soil moisture during the summer and fall result in net annual carbon losses from land. These modes of variability are also seen in satellite proxies of GPP, suggesting that CESM2 appropriately represents regional sensitivities of photosynthesis to climate variability on seasonal time scales.

3.
Sci Rep ; 10(1): 10166, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576862

RESUMO

The most comprehensive data on poaching of African elephants comes from the Monitoring the Illegal Killing of Elephants (MIKE) program, which reports numbers of illegally killed carcasses encountered by rangers. Recent studies utilizing MIKE data have reported that poaching of African elephants peaked in 2011 and has been decreasing through 2018. Closer examination of these studies, however, raises questions about the conclusion that poaching is decreasing throughout the continent. To provide more accurate information on trends in elephant poaching, we analyzed MIKE data using state-space models. State-space models account for missing data and the error inherent when sampling carcasses. Using the state-space model, for 2011-2018, we found no significant temporal trends in rates of illegal killing for Southern, Central and Western Africa. Only in Eastern Africa have poaching rates decreased substantially since 2011. For Africa as a whole, poaching did decline for 2011-2018, but the decline was entirely due to Eastern African sites. Our results suggest that poaching for ivory has not diminished across most of Africa since 2011. Continued vigilance and anti-poaching efforts will be necessary to combat poaching and to conserve African elephants.


Assuntos
Animais Selvagens , Crime/prevenção & controle , Crime/estatística & dados numéricos , Elefantes , Simulação de Ambiente Espacial , África/epidemiologia , Animais , Conservação dos Recursos Naturais , Crime/legislação & jurisprudência , Fatores de Tempo
4.
Nat Commun ; 11(1): 2166, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358499

RESUMO

The California Current System (CCS) sustains economically valuable fisheries and is particularly vulnerable to ocean acidification, due to its natural upwelling of carbon-enriched waters that generate corrosive conditions for local ecosystems. Here we use a novel suite of retrospective, initialized ensemble forecasts with an Earth system model (ESM) to predict the evolution of surface pH anomalies in the CCS. We show that the forecast system skillfully predicts observed surface pH variations a year in advance over a naive forecasting method, with the potential for skillful prediction up to five years in advance. Skillful predictions of surface pH are mainly derived from the initialization of dissolved inorganic carbon anomalies that are subsequently transported into the CCS. Our results demonstrate the potential for ESMs to provide skillful predictions of ocean acidification on large scales in the CCS. Initialized ESMs could also provide boundary conditions to improve high-resolution regional forecasting systems.

7.
Science ; 359(6380): 1139-1143, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29590043

RESUMO

Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower-trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.


Assuntos
Ciclo do Carbono , Mudança Climática , Pesqueiros , Animais , Temperatura Alta , Camada de Gelo , Oceanos e Mares , Vento
8.
Proc Natl Acad Sci U S A ; 114(42): 11075-11080, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973944

RESUMO

The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δ18O of benthic foraminiferal calcite (δ18Oc). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δ18O evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δ18Oc likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δ18O, and call for caution when inferring water mass changes from δ18Oc records while assuming uniform changes in deep temperatures.

9.
Nature ; 530(7591): 469-72, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911782

RESUMO

The ocean has absorbed 41 per cent of all anthropogenic carbon emitted as a result of fossil fuel burning and cement manufacture. The magnitude and the large-scale distribution of the ocean carbon sink is well quantified for recent decades. In contrast, temporal changes in the oceanic carbon sink remain poorly understood. It has proved difficult to distinguish between air-to-sea carbon flux trends that are due to anthropogenic climate change and those due to internal climate variability. Here we use a modelling approach that allows for this separation, revealing how the ocean carbon sink may be expected to change throughout this century in different oceanic regions. Our findings suggest that, owing to large internal climate variability, it is unlikely that changes in the rate of anthropogenic carbon uptake can be directly observed in most oceanic regions at present, but that this may become possible between 2020 and 2050 in some regions.


Assuntos
Dióxido de Carbono/análise , Sequestro de Carbono , Mudança Climática/estatística & dados numéricos , Observação , Água do Mar/química , Atmosfera/química , Ciclo do Carbono , Ecossistema , Atividades Humanas , Modelos Teóricos , Oceanos e Mares , Fatores de Tempo
11.
Nature ; 437(7059): 681-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16193043

RESUMO

Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms--such as corals and some plankton--will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean-carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.


Assuntos
Calcificação Fisiológica , Carbonato de Cálcio/metabolismo , Ecossistema , Água do Mar/química , Ácidos/análise , Animais , Antozoários/metabolismo , Atmosfera/química , Carbonato de Cálcio/análise , Carbonato de Cálcio/química , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clima , Cadeia Alimentar , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plâncton/química , Plâncton/metabolismo , Termodinâmica , Fatores de Tempo , Incerteza
12.
Proc Natl Acad Sci U S A ; 102(32): 11201-6, 2005 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16061800

RESUMO

Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.


Assuntos
Atmosfera/química , Carbono/química , Clima , Meio Ambiente , Efeito Estufa , Modelos Teóricos , Dióxido de Carbono/análise , Combustíveis Fósseis/análise , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...