Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37986850

RESUMO

Hypoxia can trigger a sequence of breathing-related behaviors, from tachypnea to apneusis to apnea and gasping, an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypothesis that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and a distributed efference copy mechanism that generates coordinated gasp-like discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from 6 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen (N2). Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-time scale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during tachypnea, apneusis and augmented bursts, apnea, and gasping. The functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated step increments in blood pressure reported here support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping that begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea.

2.
J Neurophysiol ; 124(6): 1676-1697, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32965158

RESUMO

The respiratory motor pattern is coordinated with cardiovascular system regulation. Inspiratory drive and respiratory phase durations are tuned by blood pressure and baroreceptor reflexes. We hypothesized that perturbations of systemic arterial blood pressure modulate inspiratory drive through a raphe-pontomedullary network. In 15 adult decerebrate vagotomized neuromuscular-blocked cats, we used multielectrode arrays to record the activities of 704 neurons within the medullary ventral respiratory column, pons, and raphe areas during baroreceptor-evoked perturbations of breathing, as measured by altered peak activity in integrated efferent phrenic nerve activity and changes in respiratory phase durations. Blood pressure was transiently (30 s) elevated or reduced by inflations of an embolectomy catheter in the descending aorta or inferior vena cava. S-transform time-frequency representations were calculated for multiunit phrenic nerve activity and some spike trains to identify changes in rhythmic activity during perturbations. Altered firing rates in response to either or both conditions were detected for 474 of 704 tested cells. Spike trains of 17,805 neuron pairs were evaluated for short-time scale correlational signatures indicative of functional connectivity with standard cross-correlation analysis, supplemented with gravitational clustering; ∼70% of tested (498 of 704) and responding neurons (333 of 474) were involved in a functional correlation with at least one other cell. Changes in high-frequency oscillations in the spiking of inspiratory neurons and the evocation or resetting of slow quasi-periodic fluctuations in the respiratory motor pattern associated with oscillations of arterial pressure were observed. The results support a linked-loop pontomedullary network architecture for multispectral tuning of inspiration.NEW & NOTEWORTHY The brain network that supports cardiorespiratory coupling remains poorly understood. Using multielectrode arrays, we tested the hypothesis that blood pressure and baroreceptor reflexes "tune" the breathing motor pattern via a raphe-pontomedullary network. Neuron responses to changes in arterial pressure and identified functional connectivity, together with altered high frequency and slow Lundberg B-wave oscillations, support a model with linked recurrent inhibitory loops that stabilize the respiratory network and provide a path for transmission of baroreceptor signals.


Assuntos
Pressão Sanguínea/fisiologia , Encéfalo/fisiologia , Inalação/fisiologia , Neurônios/fisiologia , Animais , Barorreflexo/fisiologia , Gatos , Feminino , Masculino , Bulbo/fisiologia , Vias Neurais/fisiologia , Nervo Frênico/fisiologia , Ponte/fisiologia , Núcleos da Rafe/fisiologia
3.
J Am Heart Assoc ; 7(23): e008919, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30511897

RESUMO

Background Cardiac autonomic neuropathy is thought to cause adverse cardiovascular effects in diabetes mellitus. Pulmonary vein ganglia ( PVG ), which have been implicated in normal and abnormal heart rhythm regulation, have not been fully investigated in type 1 diabetes mellitus (T1D). We examined the functional and anatomical effects of T1D on PVG and studied the details of T1D-induced remodeling on the PVG structure and function. Methods and Results We used a mouse model of T1D (Akita mouse), immunofluorescence, isolated Langendorff-perfused hearts, and mathematical simulations to explore the effects of T1D on PVG . Whole-mount atrial immunofluorescence of choline acetyltransferase and tyrosine hydroxylase labeling showed that sympathetic and parasympathetic somas of the PVG neurons were significantly hypotrophied in T1D hearts versus wild type. Stimulation of PVG in isolated Langendorff-perfused hearts caused more pronounced P-P interval prolongation in wild type compared with Akita hearts. Propranolol resulted in a comparable P-P prolongation in both phenotypes, and atropine led to more pronounced P-P interval shortening in wild type compared with Akita hearts. Numerical modeling using network simulations revealed that a decrease in the sympathetic and parasympathetic activities of PVG in T1D could explain the experimental results. Conclusions T1D leads to PVG remodeling with hypotrophy of sympathetic and parasympathetic cell bodies and a concomitant decrease in the PVG sympathetic and parasympathetic activities.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Cardiomiopatias Diabéticas/patologia , Gânglios/patologia , Plasticidade Neuronal , Veias Pulmonares/inervação , Animais , Cardiomiopatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Eletrocardiografia , Imunofluorescência , Gânglios/fisiopatologia , Coração/fisiopatologia , Camundongos , Camundongos Mutantes , Microscopia Confocal
4.
Front Physiol ; 9: 785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013484

RESUMO

Swallow-breathing coordination safeguards the lower airways from tracheal aspiration of bolus material as it moves through the pharynx into the esophagus. Impaired movements of the shared muscles or structures of the aerodigestive tract, or disruptions in the interaction of brainstem swallow and respiratory central pattern generators (CPGs) result in dysphagia. To maximize lower airway protection these CPGs integrate respiratory rhythm generation signals and vagal afferent feedback to synchronize swallow with breathing. Despite extensive study, the roles of central respiratory activity and vagal feedback from the lungs as key elements for effective swallow-breathing coordination remain unclear. The effect of altered timing of bronchopulmonary vagal afferent input on swallows triggered during electrical stimulation of the superior laryngeal nerves or by injection of water into the pharyngeal cavity was studied in decerebrate, paralyzed, and artificially ventilated cats. We observed two types of single swallows that produced distinct effects on central respiratory-rhythm across all conditions: post-inspiratory type swallows disrupted central-inspiratory activity without affecting expiration, whereas expiratory type swallows prolonged expiration without affecting central-inspiratory activity. Repetitive swallows observed during apnea reset the E2 phase of central respiration and produced facilitation of swallow motor output nerve burst durations. Moreover, swallow initiation was negatively modulated by vagal feedback and was reset by lung inflation. Collectively, these findings support a novel model of reciprocal inhibition between the swallow CPG and inspiratory or expiratory cells of the respiratory CPG where lung distension and phases of central respiratory activity represent a dual peripheral and central gating mechanism of swallow-breathing coordination.

5.
Physiology (Bethesda) ; 33(4): 281-297, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897299

RESUMO

Advances in our understanding of brain mechanisms for the hypoxic ventilatory response, coordinated changes in blood pressure, and the long-term consequences of chronic intermittent hypoxia as in sleep apnea, such as hypertension and heart failure, are giving impetus to the search for therapies to "erase" dysfunctional memories distributed in the carotid bodies and central nervous system. We review current network models, open questions, sex differences, and implications for translational research.


Assuntos
Corpo Carotídeo/fisiopatologia , Hipóxia/fisiopatologia , Pressão Sanguínea/fisiologia , Humanos , Hipertensão/fisiopatologia , Caracteres Sexuais , Síndromes da Apneia do Sono/fisiopatologia
6.
J Neurophysiol ; 119(2): 700-722, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046425

RESUMO

We tested the hypothesis that carotid chemoreceptors tune breathing through parallel circuit paths that target distinct elements of an inspiratory neuron chain in the ventral respiratory column (VRC). Microelectrode arrays were used to monitor neuronal spike trains simultaneously in the VRC, peri-nucleus tractus solitarius (p-NTS)-medial medulla, the dorsal parafacial region of the lateral tegmental field (FTL-pF), and medullary raphe nuclei together with phrenic nerve activity during selective stimulation of carotid chemoreceptors or transient hypoxia in 19 decerebrate, neuromuscularly blocked, and artificially ventilated cats. Of 994 neurons tested, 56% had a significant change in firing rate. A total of 33,422 cell pairs were evaluated for signs of functional interaction; 63% of chemoresponsive neurons were elements of at least one pair with correlational signatures indicative of paucisynaptic relationships. We detected evidence for postinspiratory neuron inhibition of rostral VRC I-Driver (pre-Bötzinger) neurons, an interaction predicted to modulate breathing frequency, and for reciprocal excitation between chemoresponsive p-NTS neurons and more downstream VRC inspiratory neurons for control of breathing depth. Chemoresponsive pericolumnar tonic expiratory neurons, proposed to amplify inspiratory drive by disinhibition, were correlationally linked to afferent and efferent "chains" of chemoresponsive neurons extending to all monitored regions. The chains included coordinated clusters of chemoresponsive FTL-pF neurons with functional links to widespread medullary sites involved in the control of breathing. The results support long-standing concepts on brain stem network architecture and a circuit model for peripheral chemoreceptor modulation of breathing with multiple circuit loops and chains tuned by tegmental field neurons with quasi-periodic discharge patterns. NEW & NOTEWORTHY We tested the long-standing hypothesis that carotid chemoreceptors tune the frequency and depth of breathing through parallel circuit operations targeting the ventral respiratory column. Responses to stimulation of the chemoreceptors and identified functional connectivity support differential tuning of inspiratory neuron burst duration and firing rate and a model of brain stem network architecture incorporating tonic expiratory "hub" neurons regulated by convergent neuronal chains and loops through rostral lateral tegmental field neurons with quasi-periodic discharge patterns.


Assuntos
Corpo Carotídeo/fisiologia , Bulbo/fisiologia , Respiração , Formação Reticular/fisiologia , Animais , Gatos , Feminino , Masculino , Bulbo/citologia , Nervo Frênico/fisiologia , Formação Reticular/citologia
7.
J Appl Physiol (1985) ; 121(1): 268-78, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27283917

RESUMO

We investigated the hypothesis, motivated in part by a coordinated computational cough network model, that second-order neurons in the nucleus tractus solitarius (NTS) act as a filter and shape afferent input to the respiratory network during the production of cough. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms of the parasternal (inspiratory) and rectus abdominis (expiratory) muscles and esophageal pressure were recorded. In vivo data revealed that expiratory motor drive during bouts of repetitive coughs is variable: peak expulsive amplitude increases from the first cough, peaks about the eighth or ninth cough, and then decreases through the remainder of the bout. Model simulations indicated that feed-forward inhibition of a single second-order neuron population is not sufficient to account for this dynamic feature of a repetitive cough bout. When a single second-order population was split into two subpopulations (inspiratory and expiratory), the resultant model produced simulated expiratory motor bursts that were comparable to in vivo data. However, expiratory phase durations during these simulations of repetitive coughing had less variance than those in vivo. Simulations in which reciprocal inhibitory processes between inspiratory-decrementing and expiratory-augmenting-late neurons were introduced exhibited increased variance in the expiratory phase durations. These results support the prediction that serial and parallel processing of airway afferent signals in the NTS play a role in generation of the motor pattern for cough.


Assuntos
Tosse/fisiopatologia , Animais , Gatos , Simulação por Computador , Esôfago/fisiopatologia , Inibição Psicológica , Masculino , Córtex Motor/fisiopatologia , Neurônios/fisiologia , Pressão , Respiração , Músculos Respiratórios/fisiopatologia
8.
J Neurophysiol ; 114(4): 2162-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26203111

RESUMO

Hyperventilation is a common feature of disordered breathing. Apnea ensues if CO2 drive is sufficiently reduced. We tested the hypothesis that medullary raphé, ventral respiratory column (VRC), and pontine neurons have functional connectivity and persistent or evoked activities appropriate for roles in the suppression of drive and rhythm during hyperventilation and apnea. Phrenic nerve activity, arterial blood pressure, end-tidal CO2, and other parameters were monitored in 10 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated cats. Multielectrode arrays recorded spiking activity of 649 neurons. Loss and return of rhythmic activity during passive hyperventilation to apnea were identified with the S-transform. Diverse fluctuating activity patterns were recorded in the raphé-pontomedullary respiratory network during the transition to hypocapnic apnea. The firing rates of 160 neurons increased during apnea; the rates of 241 others decreased or stopped. VRC inspiratory neurons were usually the last to cease firing or lose rhythmic activity during the transition to apnea. Mayer wave-related oscillations (0.04-0.1 Hz) in firing rate were also disrupted during apnea. Four-hundred neurons (62%) were elements of pairs with at least one hyperventilation-responsive neuron and a correlational signature of interaction identified by cross-correlation or gravitational clustering. Our results support a model with distinct groups of chemoresponsive raphé neurons contributing to hypocapnic apnea through parallel processes that incorporate disfacilitation and active inhibition of inspiratory motor drive by expiratory neurons. During apnea, carotid chemoreceptors can evoke rhythm reemergence and an inspiratory shift in the balance of reciprocal inhibition via suppression of ongoing tonic expiratory neuron activity.


Assuntos
Apneia/fisiopatologia , Hipocapnia/fisiopatologia , Bulbo/fisiopatologia , Ponte/fisiopatologia , Núcleos da Rafe/fisiopatologia , Respiração , Potenciais de Ação/fisiologia , Animais , Gatos , Eletrodos Implantados , Vias Neurais/fisiopatologia , Neurônios/fisiologia , Respiração Artificial
10.
Respir Physiol Neurobiol ; 189(3): 543-51, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23998999

RESUMO

Airway protections is the prevention and/or removal of material by behaviors such as cough and swallow. We hypothesized these behaviors are coordinated to respond to aspiration. Anesthetized animals were challenged with simulated aspiration that induced both coughing and swallowing. Electromyograms of upper airway and respiratory muscles together with esophageal pressure were recorded to identify and evaluate cough and swallow. During simulated aspiration, both cough and swallow intensity increased and swallow duration decreased consistent with rapid pharyngeal clearance. Phase restriction between cough and swallow was observed; swallow was restricted to the E2 phase of cough. These results support three main conclusions: 1) the cough and swallow pattern generators are tightly coordinated so as to generate a protective meta-behavior; 2) the trachea provides feedback on swallow quality, informing the brainstem about aspiration incidences; and 3) the larynx and upper esophageal sphincter act as two separate valves controlling the direction of positive and negative pressures from the upper airway into the thorax.


Assuntos
Tosse/complicações , Deglutição/fisiologia , Sistema Respiratório/fisiopatologia , Animais , Gatos , Tosse/etiologia , Tosse/patologia , Eletromiografia , Masculino , Estimulação Física/efeitos adversos , Músculos Respiratórios/fisiopatologia
11.
Front Physiol ; 3: 264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22934020

RESUMO

Data-driven computational neural network models have been used to study mechanisms for generating the motor patterns for breathing and breathing related behaviors such as coughing. These models have commonly been evaluated in open loop conditions or with feedback of lung volume simply represented as a filtered version of phrenic motor output. Limitations of these approaches preclude assessment of the influence of mechanical properties of the musculoskeletal system and motivated development of a biomechanical model of the respiratory muscles, airway, and lungs using published measures from human subjects. Here we describe the model and some aspects of its behavior when linked to a computational brainstem respiratory network model for breathing and airway defensive behavior composed of discrete "integrate and fire" populations. The network incorporated multiple circuit paths and operations for tuning inspiratory drive suggested by prior work. Results from neuromechanical system simulations included generation of a eupneic-like breathing pattern and the observation that increased respiratory drive and operating volume result in higher peak flow rates during cough, even when the expiratory drive is unchanged, or when the expiratory abdominal pressure is unchanged. Sequential elimination of the model's sources of inspiratory drive during cough also suggested a role for disinhibitory regulation via tonic expiratory neurons, a result that was subsequently supported by an analysis of in vivo data. Comparisons with antecedent models, discrepancies with experimental results, and some model limitations are noted.

12.
J Neurophysiol ; 107(2): 603-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21994272

RESUMO

Ventrolateral respiratory column (VRC) circuits that modulate breathing in response to changes in central chemoreceptor drive are incompletely understood. We employed multielectrode arrays and spike train correlation methods to test predictions of the hypothesis that pre-Bötzinger complex (pre-BötC) and retrotrapezoid nucleus/parafacial (RTN-pF) circuits cooperate in chemoreceptor-evoked tuning of ventral respiratory group (VRG) inspiratory neurons. Central chemoreceptors were selectively stimulated by injections of CO(2)-saturated saline into the vertebral artery in seven decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated cats. Among sampled neurons in the Bötzinger complex (BötC)-to-VRG region, 70% (161 of 231) had a significant change in firing rate after chemoreceptor stimulation, as did 70% (101 of 144) of the RTN-pF neurons. Other responsive neurons (24 BötC-VRG; 11 RTN-pF) had a change in the depth of respiratory modulation without a significant change in average firing rate. Seventy BötC-VRG chemoresponsive neurons triggered 189 offset-feature correlograms (96 peaks; 93 troughs) with at least one responsive BötC-VRG cell. Functional input from at least one RTN-pF cell could be inferred for 45 BötC-VRG neurons (19%). Eleven RTN-pF cells were correlated with more than one BötC-VRG target neuron, providing evidence for divergent connectivity. Thirty-seven RTN-pF neurons, 24 of which were chemoresponsive, were correlated with at least one chemoresponsive BötC-VRG neuron. Correlation linkage maps and spike-triggered averages of phrenic nerve signals suggest transmission of chemoreceptor drive via a multipath network architecture: RTN-pF modulation of pre-BötC-VRG rostral-to-caudal excitatory inspiratory neuron chains is tuned by feedforward and recurrent inhibition from other inspiratory neurons and from "tonic" expiratory neurons.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/citologia , Vias Neurais/fisiologia , Respiração , Centro Respiratório/fisiologia , Potenciais de Ação/fisiologia , Animais , Relógios Biológicos , Gatos , Células Quimiorreceptoras/classificação , Feminino , Masculino , Nervo Frênico/fisiologia , Centro Respiratório/citologia , Mecânica Respiratória/fisiologia , Estatística como Assunto
13.
Compr Physiol ; 2(3): 1619-70, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23687564

RESUMO

Computational models of the neural control system for breathing in mammals provide a theoretical and computational framework bringing together experimental data obtained from different animal preparations under various experimental conditions. Many of these models were developed in parallel and iteratively with experimental studies and provided predictions guiding new experiments. This data-driven modeling approach has advanced our understanding of respiratory network architecture and neural mechanisms underlying generation of the respiratory rhythm and pattern, including their functional reorganization under different physiological conditions. Models reviewed here vary in neurobiological details and computational complexity and span multiple spatiotemporal scales of respiratory control mechanisms. Recent models describe interacting populations of respiratory neurons spatially distributed within the Bötzinger and pre-Bötzinger complexes and rostral ventrolateral medulla that contain core circuits of the respiratory central pattern generator (CPG). Network interactions within these circuits along with intrinsic rhythmogenic properties of neurons form a hierarchy of multiple rhythm generation mechanisms. The functional expression of these mechanisms is controlled by input drives from other brainstem components,including the retrotrapezoid nucleus and pons, which regulate the dynamic behavior of the core circuitry. The emerging view is that the brainstem respiratory network has rhythmogenic capabilities at multiple levels of circuit organization. This allows flexible, state-dependent expression of different neural pattern-generation mechanisms under various physiological conditions,enabling a wide repertoire of respiratory behaviors. Some models consider control of the respiratory CPG by pulmonary feedback and network reconfiguration during defensive behaviors such as cough. Future directions in modeling of the respiratory CPG are considered.


Assuntos
Modelos Neurológicos , Rede Nervosa/fisiologia , Sistema Respiratório/inervação , Encéfalo/citologia , Encéfalo/fisiologia , Humanos , Rede Nervosa/citologia , Neurônios/classificação , Neurônios/fisiologia , Reflexo
14.
J Appl Physiol (1985) ; 111(3): 861-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21719729

RESUMO

We tested the hypothesis, motivated in part by a coordinated computational cough network model, that alterations of mean systemic arterial blood pressure (BP) influence the excitability and motor pattern of cough. Model simulations predicted suppression of coughing by stimulation of arterial baroreceptors. In vivo experiments were conducted on anesthetized spontaneously breathing cats. Cough was elicited by mechanical stimulation of the intrathoracic airways. Electromyograms (EMG) of inspiratory parasternal, expiratory abdominal, laryngeal posterior cricoarytenoid (PCA), and thyroarytenoid muscles along with esophageal pressure (EP) and BP were recorded. Transiently elevated BP significantly reduced cough number, cough-related inspiratory, and expiratory amplitudes of EP, peak parasternal and abdominal EMG, and maximum of PCA EMG during the expulsive phase of cough, and prolonged the cough inspiratory and expiratory phases as well as cough cycle duration compared with control coughs. Latencies from the beginning of stimulation to the onset of cough-related diaphragm and abdominal activities were increased. Increases in BP also elicited bradycardia and isocapnic bradypnea. Reductions in BP increased cough number; elevated inspiratory EP amplitude and parasternal, abdominal, and inspiratory PCA EMG amplitudes; decreased total cough cycle duration; shortened the durations of the cough expiratory phase and cough-related abdominal discharge; and shortened cough latency compared with control coughs. Reduced BP also produced tachycardia, tachypnea, and hypocapnic hyperventilation. These effects of BP on coughing likely originate from interactions between barosensitive and respiratory brainstem neuronal networks, particularly by modulation of respiratory neurons within multiple respiration/cough-related brainstem areas by baroreceptor input.


Assuntos
Pressão Sanguínea , Brônquios/inervação , Simulação por Computador , Tosse/fisiopatologia , Modelos Cardiovasculares , Modelos Neurológicos , Respiração , Traqueia/inervação , Músculos Abdominais/fisiopatologia , Animais , Barorreflexo , Gatos , Eletromiografia , Feminino , Frequência Cardíaca , Masculino , Vias Neurais/fisiopatologia , Estimulação Física , Tempo de Reação , Centro Respiratório/fisiopatologia , Músculos Respiratórios/fisiopatologia , Fatores de Tempo
15.
J Neurophysiol ; 105(6): 2960-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21389310

RESUMO

The medullary ventral respiratory column (VRC) of neurons is essential for respiratory motor pattern generation; however, the functional connections among these cells are not well understood. A rostral extension of the VRC, including the retrotrapezoid nucleus/parafacial region (RTN-pF), contains neurons responsive to local perturbations of CO(2)/pH. We addressed the hypothesis that both local RTN-pF interactions and functional connections from more caudal VRC compartments--extending from the Bötzinger and pre-Bötzinger complexes to the ventral respiratory group (Böt-VRG)--influence the respiratory modulation of RTN-pF neurons and their responses to central chemoreceptor and baroreflex activation. Spike trains from 294 RTN-pF and 490 Böt-VRG neurons were monitored with multielectrode arrays along with phrenic nerve activity in 14 decerebrate, vagotomized cats. Overall, 214 RTN-pF and 398 Böt-VRG neurons were respiratory modulated; 124 and 95, respectively, were cardiac modulated. Subsets of these neurons were tested with sequential, selective, transient stimulation of central chemoreceptors and arterial baroreceptors; each cell's response was evaluated and categorized according to the change in firing rate (if any) following the stimulus. Cross-correlation analysis was applied to 2,884 RTN-pF↔RTN-pF and 8,490 Böt-VRG↔RTN-pF neuron pairs. In total, 174 RTN-pF neurons (59.5%) had significant features in short-time scale correlations with other RTN-pF neurons. Of these, 49 neurons triggered cross-correlograms with offset peaks or troughs (n = 99) indicative of paucisynaptic excitation or inhibition of the target. Forty-nine Böt-VRG neurons (10.0%) were triggers in 74 Böt-VRG→RTN-pF correlograms with offset features, suggesting that Böt-VRG trigger neurons influence RTN-pF target neurons. The results support the hypothesis that local RTN-pF neuron interactions and inputs from Böt-VRG neurons jointly contribute to respiratory modulation of RTN-pF neuronal discharge patterns and promotion or limitation of their responses to central chemoreceptor and baroreceptor stimulation.


Assuntos
Mapeamento Encefálico , Células Quimiorreceptoras/fisiologia , Bulbo/citologia , Centro Respiratório/fisiologia , Mecânica Respiratória/fisiologia , Potenciais de Ação/fisiologia , Animais , Corpo Carotídeo/citologia , Corpo Carotídeo/fisiologia , Gatos , Estimulação Elétrica/métodos , Modelos Biológicos , Vias Neurais/fisiologia , Neurônios/fisiologia , Nervo Frênico/fisiologia , Pressorreceptores/fisiologia , Centro Respiratório/citologia , Estatística como Assunto
16.
Respir Physiol Neurobiol ; 168(1-2): 76-85, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19643216

RESUMO

Cardio-respiratory coupling is reciprocal; it is expressed as respiratory-modulated sympathetic nerve activity and pulse-modulated respiratory motor activity. In the brainstem, the neuraxis controlling cardio-respiratory functions forms a ventrolateral cell column which extends to the dorsolateral (dl) pons. Our general working hypothesis is that these control systems converge at points with the common purpose of gas exchange and that neural activity along this axis coordinates both arterial pulse pressure and breathing. Here, we review the data showing that pontine nuclei modulate heart rate, blood pressure and breathing, and present new results demonstrating a vagal influence on pontine activity modulated with both arterial pulse pressure and phrenic nerve activity in the decerebrate cat. Generally with the vagi intact, dl pontine activity was weakly modulated by both arterial pulse pressure and respiratory pattern. After bilateral vagotomy, the strength and consistency of respiratory modulation increased significantly, although the strength and consistency of arterial pulse pressure modulation did not change significantly for the group; a decrease in some (62%) was offset by an increase in others (36%) neurons. Thus, the vagus shapes the envelope of the cycle-triggered averages of neural activity for both the respiratory and cardiac cycles. These data provide insight into the neural substrate for the prominent vagal effect on the cardio-respiratory coupling pattern, in particular respiratory sinus arrhythmia. While these results support convergence of inputs to neural populations controlling breathing and cardiovascular functions, the physiologic role of balancing ventilation, vascular resistance, heart rate and blood flow for the benefit of tissue oxygenation, remains hypothetical.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Nervos Periféricos/fisiologia , Ponte/citologia , Ponte/fisiologia , Respiração , Sistema Respiratório , Potenciais de Ação/fisiologia , Animais , Gatos , Estado de Descerebração , Estimulação Elétrica/métodos , Frequência Cardíaca/fisiologia , Humanos , Neurônios/fisiologia , Nervo Frênico/fisiologia , Ratos , Vagotomia
17.
Philos Trans R Soc Lond B Biol Sci ; 364(1529): 2501-16, 2009 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-19651652

RESUMO

The brainstem network for generating and modulating the respiratory motor pattern includes neurons of the medullary ventrolateral respiratory column (VRC), dorsolateral pons (PRG) and raphé nuclei. Midline raphé neurons are proposed to be elements of a distributed brainstem system of central chemoreceptors, as well as modulators of central chemoreceptors at other sites, including the retrotrapezoid nucleus. Stimulation of the raphé system or peripheral chemoreceptors can induce a long-term facilitation of phrenic nerve activity; central chemoreceptor stimulation does not. The network mechanisms through which each class of chemoreceptor differentially influences breathing are poorly understood. Microelectrode arrays were used to monitor sets of spike trains from 114 PRG, 198 VRC and 166 midline neurons in six decerebrate vagotomized cats; 356 were recorded during sequential stimulation of both receptor classes via brief CO(2)-saturated saline injections in vertebral (central) and carotid arteries (peripheral). Seventy neurons responded to both stimuli. More neurons were responsive only to peripheral challenges than those responsive only to central chemoreceptor stimulation (PRG, 20 : 4; VRC, 41 : 10; midline, 25 : 13). Of 16 474 pairs of neurons evaluated for short-time scale correlations, similar percentages of reference neurons in each brain region had correlation features indicative of a specific interaction with at least one target neuron: PRG (59.6%), VRC (51.0%) and raphé nuclei (45.8%). The results suggest a brainstem network architecture with connectivity that shapes the respiratory motor pattern via overlapping circuits that modulate central and peripheral chemoreceptor-mediated influences on breathing.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Nervo Frênico/fisiologia , Ponte/fisiologia , Núcleos da Rafe/fisiologia , Mecânica Respiratória/fisiologia , Potenciais de Ação/fisiologia , Animais , Dióxido de Carbono , Gatos , Microeletrodos , Vias Neurais/fisiologia , Neurônios/metabolismo
18.
J Neurophysiol ; 101(6): 2943-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19297509

RESUMO

Recently, Segers et al. identified functional connectivity between the ventrolateral respiratory column (VRC) and the pontine respiratory group (PRG). The apparent sparseness of detected paucisynaptic interactions motivated consideration of other potential functional pathways between these two regions. We report here evidence for "indirect" serial functional linkages between the PRG and VRC via intermediary brain stem midline raphé neurons. Arrays of microelectrodes were used to record sets of spike trains from a total of 145 PRG, 282 VRC, and 340 midline neurons in 11 decerebrate, vagotomized, neuromuscularly blocked, ventilated cats. Spike trains of 13,843 pairs of neurons that included at least one raphé cell were screened for respiratory modulation and short-time scale correlations. Significant correlogram features were detected in 7.2% of raphé-raphé (291/4,021), 4.3% of VRC-raphé (292/6,755), and 4.0% of the PRG-raphé (124/3,067) neuron pairs. Central peaks indicative of shared influences were the most common feature in correlations between pairs of raphé neurons, whereas correlated raphé-PRG and raphé-VRC neuron pairs displayed predominantly offset peaks and troughs, features suggesting a paucisynaptic influence of one neuron on the other. Overall, offset correlogram features provided evidence for 33 VRC-to-raphé-to-PRG and 45 PRG-to-raphé-to-VRC correlational linkage chains with one or two intermediate raphé neurons. The results support a respiratory network architecture with parallel VRC-to-PRG and PRG-to-VRC links operating through intervening midline circuits, and suggest that raphé neurons contribute to the respiratory modulation of PRG neurons and shape the respiratory motor pattern through coordinated divergent actions on both the PRG and VRC.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Ponte/fisiologia , Núcleos da Rafe/fisiologia , Centro Respiratório/fisiologia , Análise de Variância , Animais , Mapeamento Encefálico , Gatos , Estimulação Elétrica , Feminino , Masculino , Modelos Neurológicos , Vias Neurais/citologia , Vias Neurais/fisiologia , Ponte/citologia , Núcleos da Rafe/citologia , Tempo de Reação , Centro Respiratório/citologia , Estatística como Assunto
19.
J Neurophysiol ; 100(4): 1749-69, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18632881

RESUMO

Current models propose that a neuronal network in the ventrolateral medulla generates the basic respiratory rhythm and that this ventrolateral respiratory column (VRC) is profoundly influenced by the neurons of the pontine respiratory group (PRG). However, functional connectivity among PRG and VRC neurons is poorly understood. This study addressed four model-based hypotheses: 1) the respiratory modulation of PRG neuron populations reflects paucisynaptic actions of multiple VRC populations; 2) functional connections among PRG neurons shape and coordinate their respiratory-modulated activities; 3) the PRG acts on multiple VRC populations, contributing to phase-switching; and 4) neurons with no respiratory modulation located in close proximity to the VRC and PRG have widely distributed actions on respiratory-modulated cells. Two arrays of microelectrodes with individual depth adjustment were used to record sets of spike trains from a total of 145 PRG and 282 VRC neurons in 10 decerebrate, vagotomized, neuromuscularly blocked, ventilated cats. Data were evaluated for respiratory modulation with respect to efferent phrenic motoneuron activity and short-timescale correlations indicative of paucisynaptic functional connectivity using cross-correlation analysis and the "gravity" method. Correlogram features were found for 109 (3%) of the 3,218 pairs composed of a PRG and a VRC neuron, 126 (12%) of the 1,043 PRG-PRG pairs, and 319 (7%) of the 4,340 VRC-VRC neuron pairs evaluated. Correlation linkage maps generated for the data support our four motivating hypotheses and suggest network mechanisms for proposed modulatory functions of the PRG.


Assuntos
Bulbo/fisiologia , Vias Neurais/fisiologia , Ponte/fisiologia , Sistema Respiratório/inervação , Animais , Gatos , Simulação por Computador , Interpretação Estatística de Dados , Estado de Descerebração/fisiopatologia , Eletrofisiologia , Humanos , Modelos Estatísticos , Terminações Nervosas/fisiologia , Neurônios/fisiologia , Técnicas de Patch-Clamp
20.
J Physiol ; 586(17): 4265-82, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599543

RESUMO

The dorsolateral (DL) pons modulates the respiratory pattern. With the prevention of lung inflation during central inspiratory phase (no-inflation (no-I or delayed-I) tests), DL pontine neuronal activity increased the strength and consistency of its respiratory modulation, properties measured statistically by the eta(2) value. This increase could result from enhanced respiratory-modulated drive arising from the medulla normally gated by vagal activity. We hypothesized that DL pontine activity during delayed-I tests would be comparable to that following vagotomy. Ensemble recordings of neuronal activity were obtained before and after vagotomy and during delayed-I tests in decerebrate, paralysed and ventilated cats. In general, changes in activity pattern during the delayed-I tests were similar to those after vagotomy, with the exception of firing-rate differences at the inspiratory-expiratory phase transition. Even activity that was respiratory-modulated with the vagi intact became more modulated while withholding lung inflation and following vagotomy. Furthermore, we recorded activity that was excited by lung inflation as well as changes that persisted past the stimulus cycle. Computer simulations of a recurrent inhibitory neural network model account not only for enhanced respiratory modulation with vagotomy but also the varied activities observed with the vagi intact. We conclude that (a) DL pontine neurones receive both vagal-dependent excitatory inputs and central respiratory drive; (b) even though changes in pontine activity are transient, they can persist after no-I tests whether or not changes in the respiratory pattern occur in the subsequent cycles; and (c) models of respiratory control should depict a recurrent inhibitory circuitry, which can act to maintain the stability and provide plasticity to the respiratory pattern.


Assuntos
Ponte/fisiologia , Respiração , Nervo Vago/fisiologia , Animais , Gatos , Simulação por Computador , Tosse , Modelos Biológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Vagotomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...