Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Int J Spine Surg ; 17(4): 598-606, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460239

RESUMO

BACKGROUND: Sacropelvic fixation is frequently combined with thoracolumbar instrumentation for correcting spinal deformities. This study aimed to characterize sacropelvic fixation techniques using novel porous fusion/fixation implants (PFFI). METHODS: Three T10-pelvis finite element models were created: (1) pedicle screws and rods in T10-S1, PFFI bilaterally in S2 alar-iliac (S2AI) trajectory; (2) fixation in T10-S1, PFFI bilaterally in S2AI trajectory, triangular implants bilaterally above the PFFI in a sacro-alar-iliac trajectory (PFFI-IFSAI); and (3) fixation in T10-S1, PFFI bilaterally in S2AI trajectory, PFFI in sacro-alar-iliac trajectory stacked cephalad to those in S2AI position (2-PFFI). Models were loaded with pure moments of 7.5 Nm in flexion-extension, lateral bending, and axial rotation. Outputs were compared against 2 baseline models: (1) pedicle screws and rods in T10-S1 (PED), and (2) pedicle screws and rods in T10-S1, and S2AI screws. RESULTS: PFFI and S2AI resulted in similar L5-S1 motion; adding another PFFI per side (2-PFFI) further reduced this motion. Sacroiliac joint (SIJ) motion was also similar between PFFI and S2AI; PFFI-IFSAI and 2-PFFI demonstrated a further reduction in SIJ motion. Additionally, PFFI reduced max stresses on S1 pedicle screws and on implants in the S2AI position. CONCLUSION: The study shows that supplementing a long construct with PFFI increases the stability of the L5-S1 and SIJ and reduces stresses on the S1 pedicle screws and implants in the S2AI position. CLINICAL RELEVANCE: The findings suggest a reduced risk of pseudarthrosis at L5-S1 and screw breakage. Clinical studies may be performed to demonstrate applicability to patient outcomes. LEVEL OF EVIDENCE: Not applicable (basic science study).

3.
Int J Spine Surg ; 17(1): 122-131, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574987

RESUMO

BACKGROUND: The sacroiliac joint (SIJ) transfers the load of the upper body to the lower extremities while allowing a variable physiological movement among individuals. The axis of rotation (AoR) and center of rotation (CoR) of the SIJ can be evaluated to analyze the stability of the SIJ, including when the sacrum is fixed. The purpose of this study was to determine how load intensity affects the SIJ for the intact model and to characterize how sacropelvic fixation performed with different techniques affects this joint. METHODS: Five T10-pelvis models were used: (1) intact model; (2) pedicle screws and rods in T10-S1; (3)pedicle screws and rods in T10-S1, and bilateral S2 alar-iliac screws (S2AI); (4) pedicle screws and rods in T10-S1, bilateral S2AI screws, and triangular implants inserted bilaterally in a sacral alar-iliac trajectory ; and (5) pedicle screws and rods in T10-S1, bilateral S2AI screws, and 2 bilateral triangular implants inserted in a lateral trajectory. Outputs of these models under flexion-extension were compared: AoR and CoR of the SIJ at incremental steps from 0 to 7.5 Nm for the intact model and AoR and CoR of the SIJ for the instrumented models at 7.5 Nm. RESULTS: The intact model was validated against an in vivo study by comparing range of motion and displacement of the sacrum. Increasing the load intensity for the intact model led to an increase of the rotation of the sacrum but did not change the CoR. Comparison among the instrumented models showed that sacropelvic fixation techniques reduced the rotation of the sacrum and stabilized the SIJ, in particular with triangular implants. CONCLUSION: The study outcomes suggest that increasing load intensity increases the rotation of the sacrum but does not influence the CoR, and use of sacropelvic fixation increases the stability of the SIJ, especially when triangular implants are employed. CLINICAL RELEVANCE: The choice of the instrumentation strategy for sacropelvic fixation affects the stability of the construct in terms of both range of motion and axes of rotation, with direct consequences on the risk of failure and mobilization. Clinical studies should be performed to confirm these biomechanical findings.

4.
Global Spine J ; : 21925682221141874, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36421053

RESUMO

STUDY DESIGN: Basic science (finite element analysis). OBJECTIVES: Pedicle subtraction osteotomy (PSO) at L5 is an effective treatment for sagittal imbalance, especially in select cases of patients showing kyphosis with the apex at L4-L5 but has been scarcely investigated. The aim of this study was to simulate various "high-demand" instrumentation approaches, including varying numbers of rods and sacropelvic implants, for the stabilization of a PSO at L5. METHODS: A finite element model of T10-pelvis was modified to simulate posterior fixation with pedicle screws and rods from T10 to S1, alone or in combination with an L5 PSO. Five additional configurations were then created by employing rods and novel porous fusion/fixation implants across the sacroiliac joints, in varying numbers. All models were loaded using pure moments of 7.5 Nm in flexion-extension, lateral bending, and axial rotation. RESULTS: The osteotomy resulted in a general increase in motion and stresses in posterior rods and S1 pedicle screws. When the number of rods was varied, three- and four-rod configurations were effective in limiting the maximal rod stresses; values approached those of posterior fixation with no osteotomy. Maximum stresses in the accessory rods were similar to or less than those observed in the primary rods. Multiple sacropelvic implants were effective in reducing range of motion, particularly of the SIJ. CONCLUSIONS: Multi-rod constructs and sacropelvic fixation generally reduced maximal implant stresses and motion in comparison with standard posterior fixation, suggesting a reduced risk of rod breakage and increased joint stability, respectively, when a high-demand construct is utilized for the correction of sagittal imbalance.

5.
Global Spine J ; 12(1): 45-52, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32935574

RESUMO

STUDY DESIGN: An in vitro biomechanics study. OBJECTIVE: To evaluate the efficacy of triangular titanium implants in providing mechanical stabilization to a sacroiliac joint with primary and revision sized implants. METHODS: Ten lumbopelvic cadaveric specimens were tested in 4 stages: intact, pubic symphysis sectioned, primary, and simulated revision. Primary treatment was performed using 3 laterally placed triangular titanium implants. To simulate revision conditions before and after bone ingrowth and ongrowth on the implants, 7.5-mm and 10.75-mm implants were randomly assigned to one side of each specimen during the simulated revision stage. A 6 degrees of freedom spinal loading frame was used to load specimens in 4 directions: flexion extension, lateral bending, axial torsion, and axial compression. Biomechanical evaluation was based on measures of sacroiliac joint rotational and translational motion. RESULTS: Both primary and revision implants showed the ability to reduce translational motion to a level significantly lower than the intact condition when loaded in axial compression. Simulated revision conditions showed no statistically significant differences compared with the primary implant condition, with the exception of flexion-extension range of motion where motions associated with the revised condition were significantly lower. Comparison of rotational and translation motions associated with the 7.5- and 10.75-mm implants showed no significant differences between the treatment conditions. CONCLUSIONS: These results indicate that implantation of laterally placed triangular titanium implants significantly reduces the motion of a sacroiliac joint using either the primary and revision sized implants. No statistically significant differences were detected when comparing the efficacy of primary, 7.5-mm revision, or 10.75-mm revision implants.

6.
J Neurosurg Spine ; 36(1): 42-52, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534964

RESUMO

OBJECTIVE: S2 alar-iliac (S2AI) screw fixation effectively enhances stability in long-segment constructs. Although S2AI fixation provides a single transarticular sacroiliac joint fixation (SIJF) point, additional fixation points may provide greater stability and attenuate screw and rod strain. The objectives of this study were to evaluate changes in stability and pedicle screw and rod strain with extended distal S2AI fixation and with supplemental bilateral integration of two sacroiliac joint fusion devices implanted using a traditional minimally invasive surgical approach. METHODS: Eight L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests under 4 conditions: 1) intact (pure moment loading only); 2) L2-S1 pedicle screw and rod with L5-S1 interbody fusion; 3) added S2AI screws; and 4) added bilateral laterally placed SIJF. Range of motion (ROM), rod strain, and screw-bending moment (S1 and S2AI) were analyzed. RESULTS: Compared with S1 fixation, S2AI fixation significantly reduced L5-S1 ROM in right lateral bending by 50% (0.11°, p = 0.049) and in compression by 39% (0.22°, p = 0.003). Compared with fixation ending at S1, extending fixation with S2AI significantly decreased sacroiliac joint ROM by 52% (0.28°, p = 0.02) in flexion, by 65% (0.48°, p = 0.04) in extension, by 59% (0.76°, p = 0.02) in combined flexion-extension, and by 36% (0.09°, p = 0.02) in left axial rotation. The addition of S2AI screws reduced S1 screw-bending moment during flexion (0.106 Nm [43%], p = 0.046). With S2AI fixation, posterior L5-S1 primary rod strain increased by 124% (159 µE, p = 0.002) in flexion, by 149% (285 µE, p = 0.02) in left axial rotation, and by 99% (254 µE, p = 0.04) in right axial rotation. Compared with S2AI fixation, the addition of SIJF reduced L5-S1 strain during right axial rotation by 6% (28 µE, p = 0.04) and increased L5-S1 strain in extension by 6% (28 µE, p = 0.02). CONCLUSIONS: Long-segment constructs ending with S2AI screws created a more stable construct than those ending with S1 screws, reducing lumbosacral and sacroiliac joint motion and S1 screw-bending moment in flexion. These benefits, however, were paired with increased rod strain at the lumbosacral junction. The addition of SIJF to constructs ending at S2AI did not significantly change SI joint ROM or S1 screw bending and reduced S2AI screw bending in compression. SIJF further decreased L5-S1 rod strain in axial rotation and increased it in extension.


Assuntos
Ílio/cirurgia , Articulação Sacroilíaca/cirurgia , Sacro/cirurgia , Fusão Vertebral/métodos , Cadáver , Força Compressiva , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Amplitude de Movimento Articular , Suporte de Carga
7.
Eur Spine J ; 30(12): 3763-3770, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562177

RESUMO

PURPOSE: Sacropelvic fixation is frequently used in combination with thoracolumbar instrumentation for the correction of severe spinal deformities. The purpose of this study was to explore the effects of the triangular titanium implants on the iliac screw fixation. Our hypothesis was that the use of triangular titanium implants can increase the stability of the iliac screw fixation. METHODS: Three T10-pelvis instrumented models were created: pedicle screws and rods in T10-S1, and bilateral iliac screws (IL); posterior fixation and bilateral iliac screws and triangular implants inserted bilaterally in a sacro-alar-iliac trajectory (IL-Tri-SAI); posterior fixation and bilateral iliac screws and two bilateral triangular titanium implants inserted in a lateral trajectory (IL-Tri-Lat). Outputs of these models, such as hardware stresses, were compared against a model with pedicle screws and rods in T10-S1 (PED). RESULTS: Sacropelvic fixation decreased the L5-S1 motion by 75-90%. The motion of the SIJ was reduced by 55-80% after iliac fixation; the addition of triangular titanium implants further reduced it. IL, IL-Tri-SAI and IL-Tri-Lat demonstrated lower S1 pedicle stresses with respect to PED. Triangular implants had a protective effect on the iliac screw stresses. CONCLUSION: Sacropelvic fixation decreased L5-S1 range of motion suggesting increased stability of the joint. The combination of triangular titanium implants and iliac screws reduced the residual flexibility of the sacroiliac joint, and resulted in a protective effect on the S1 pedicle screws and iliac screws themselves. Clinical studies may be performed to demonstrate applicability of these FEA results to patient outcomes.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Humanos , Ílio/cirurgia , Vértebras Lombares , Sacro , Titânio
8.
J Neurosurg Spine ; 35(3): 320-329, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34144523

RESUMO

OBJECTIVE: S2-alar-iliac (S2AI) screw fixation effectively ensures stability and enhances fusion in long-segment constructs. Nevertheless, pelvic fixation is associated with a high rate of mechanical failure. Because of the transarticular nature of the S2AI screw, adding a second point of fixation may provide additional stability and attenuate strains. The objective of the study was to evaluate changes in stability and strain with the integration of a sacroiliac (SI) joint fusion device, implanted through a novel posterior SI approach, supplemental to posterior long-segment fusion. METHODS: L1-pelvis human cadaveric specimens underwent pure moment (7.5 Nm) and compression (400 N) tests in the following conditions: 1) intact, 2) L2-S1 pedicle screw and rod fixation with L5-S1 interbody fusion, 3) added S2AI screws, and 4) added bilateral SI joint fixation (SIJF). The range of motion (ROM), rod strain, and screw bending moments (S1 and S2AI) were analyzed. RESULTS: S2AI fixation decreased L2-S1 ROM in flexion-extension (p ≤ 0.04), L5-S1 ROM in flexion-extension and compression (p ≤ 0.004), and SI joint ROM during flexion-extension and lateral bending (p ≤ 0.03) compared with S1 fixation. SI joint ROM was significantly less with SIJF in place than with the intact joint, S1, and S2AI fixation in flexion-extension and lateral bending (p ≤ 0.01). The S1 screw bending moment decreased following S2AI fixation by as much as 78% in extension, but with statistical significance only in right axial rotation (p = 0.03). Extending fixation to S2AI significantly increased the rod strain at L5-S1 during flexion, axial rotation, and compression (p ≤ 0.048). SIJF was associated with a slight increase in rod strain versus S2AI fixation alone at L5-S1 during left lateral bending (p = 0.048). Compared with the S1 condition, fixation to S2AI increased the mean rod strain at L5-S1 during compression (p = 0.048). The rod strain at L5-S1 was not statistically different with SIJF compared with S2AI fixation (p ≥ 0.12). CONCLUSIONS: Constructs ending with an S2AI screw versus an S1 screw tended to be more stable, with reduced SI joint motion. S2AI fixation decreased the S1 screw bending moments compared with fixation ending at S1. These benefits were paired with increased rod strain at L5-S1. Supplementation of S2AI fixation with SIJF implants provided further reductions (approximately 30%) in the sagittal plane and lateral bending SI joint motion compared with fixation ending at the S2AI position. This stability was not paired with significant changes in rod or screw strains.

9.
J Orthop Surg Res ; 15(1): 489, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092604

RESUMO

BACKGROUND: A number of minimally invasive sacroiliac (SI) joint fusion solutions for placing implants exist, with reduced post-operative pain and improved outcomes compared to open procedures. The objective of this study was to compare two MIS SI joint fusion approaches that place implants directly across the joint by comparing the ilium and sacrum bone characteristics and SI joint separation along the implant trajectories. METHODS: Nine cadaveric specimens (n = 9) were CT scanned and the left and right ilium and sacrum were segmented. The bone density, bone volume fraction, and SI joint gap distance were calculated along lateral and posterolateral trajectories and compared using analysis of variance between the two orientations. RESULTS: Iliac bone density, indicated by the mean Hounsfield Unit, was significantly greater for each lateral trajectory compared to posterolateral. The volume of cortical bone in the ilium was greater for the middle lateral trajectory compared to all others and for the top and bottom lateral trajectories compared to both posterolateral trajectories. Cortical density was greater in the ilium for all lateral trajectories compared to posterolateral. The bone fraction was significantly greater in all lateral trajectories compared to posterolateral in the ilium. No differences in cortical volume, cortical density, or cancellous density were found between trajectories in the sacrum. The ilium was significantly greater in density compared with the sacrum when compared irrespective of trajectory (p < 0.001). The posterolateral trajectories had a significantly larger SI joint gap than the lateral trajectories (p < 0.001). CONCLUSION: Use of the lateral approach for minimally invasive SI fusion allows the implant to interact with bone across a significantly smaller joint space. This interaction with increased cortical bone volume and density may afford better fixation with a lower risk of pull-out or implant loosening when compared to the posterolateral approach.


Assuntos
Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Articulação Sacroilíaca/cirurgia , Fusão Vertebral/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Articulação Sacroilíaca/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto Jovem
10.
Spine J ; 20(10): 1717-1724, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32502655

RESUMO

BACKGROUND CONTEXT: Long thoracolumbar fixation and fusion have become a consolidated treatment for severe spinal disorders. Concomitant sacropelvic fixation with S2 alar-iliac (S2AI) screws is frequently performed to limit instrumentation failure and pseudarthrosis at the lumbosacral junction. PURPOSE: This study explored the use of triangular titanium implants in different configurations in which the implants supplemented standard sacropelvic fixation with S2AI screws in order to further increase the stability of S2AI fixation. STUDY DESIGN: Finite element study. METHODS: Four T10-pelvis instrumented models were built: pedicle screws and rods in T10-S1 (PED); pedicle screws and rods in T10-S1, and bilateral S2 alar-iliac screws (S2AI); pedicle screws and rods in T10-S1, bilateral S2AI screws, and triangular implants inserted bilaterally in a sacral alar-iliac trajectory (Tri-SAI); pedicle screws and rods in T10-S1, bilateral S2AI screws and two bilateral triangular titanium implants inserted in a lateral trajectory (Tri-Lat). The models were tested under pure moments of 7.5 Nm in flexion-extension, lateral bending and axial rotation. RESULTS: SIJ motion was reduced by 50% to 66% after S2AI fixation; the addition of triangular titanium implants in either a SAI or a lateral trajectory further reduced it. S2AI, Tri-SAI, and Tri-Lat resulted in significantly lower stresses in S1 pedicle screws when compared to PED. Triangular implants had a protective effect on the maximal stresses in S2AI screws, especially when placed in the SAI trajectory. Sacropelvic fixation did not have any protective effect on the posterior rods. CONCLUSIONS: Supplementing S2AI screws with triangular implants had a protective effect on the S2AI screws themselves, as well as the S1 pedicle screws, in the tested model. CLINICAL SIGNIFICANCE: Triangular implants can substantially reduce the residual flexibility of the SIJ with respect to S2AI fixation alone, suggesting a possible role in patients needing reinforced fixation. In vivo investigation is needed to determine if these in vitro effects translate into clinically important differences.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Análise de Elementos Finitos , Humanos , Ílio , Sacro/cirurgia
11.
JOR Spine ; 2(4): e1067, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31891117

RESUMO

For those patients who suffer from low back pain generated by the sacroiliac (SI) joint, fusion of the SI joint has proven to be an effective means of stabilizing it and reducing pain. Though it has shown promise, SI joint fusion raises clinical questions regarding its effect on neighboring joints such as the hip. As such, the purpose of this study was to determine the effects of SI joint fixation on the hip. A finite element spine-sacroiliac-hip (SSIH) model was developed and its functionality was verified against SI joint range of motion (ROM) and hip contact stress, respectively. The intact model was fixed in double leg stance at the distal femora, and loading was applied at the lumbar spine to simulate stance, flexion, extension, right and left lateral bending, and right and left axial rotation. Functionality was confirmed by measuring and comparing SI joint ROM and contact stress and area at the hip with data from the literature. Following verification of the intact SSIH model, both unilateral and bilateral SI joint fixation were modeled; hip contact stress and area were compared to the intact state. Average hip contact stress was ~2 MPa, with most motions resulting in changes less than 5% relative to intact; contact area changed less than 10% for any motion. Clinical significance: these results demonstrated that SI joint fixation with triangular titanium implants imparted little change in stress at the hip, which suggests that the risk of developing adjacent segment disease is likely low. Future clinical studies may be executed to confirm the results of this computational study.

12.
World J Orthop ; 9(3): 14-23, 2018 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-29564210

RESUMO

AIM: To analyze how various implants placement variables affect sacroiliac (SI) joint range of motion. METHODS: An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the SI joint using various placement configurations of triangular implants (iFuse Implant System®). Placement configurations were varied by changing implant orientation, superior implant length, and number of implants. The range of motion of the SI joint was calculated using a constant moment of 10 N-m with a follower load of 400 N. The changes in motion were compared between the treatment groups to assess how the different variables affected the overall motion of the SI joint. RESULTS: Transarticular placement of 3 implants with superior implants that end in the middle of the sacrum resulted in the greatest reduction in range of motion (flexion/extension = 73%, lateral bending = 42%, axial rotation = 72%). The range of motions of the SI joints were reduced with use of transarticular orientation (9%-18%) when compared with an inline orientation. The use of a superior implant that ended mid-sacrum resulted in median reductions of (8%-14%) when compared with a superior implant that ended in the middle of the ala. Reducing the number of implants, resulted in increased SI joint range of motions for the 1 and 2 implant models of 29%-133% and 2%-39%, respectively, when compared with the 3 implant model. CONCLUSION: Using a validated finite element model we demonstrated that placement of 3 implants across the SI joint using a transarticular orientation with superior implant reaching the sacral midline resulted in the most stable construct. Additional clinical studies may be required to confirm these results.

13.
J Neurosurg Spine ; 28(3): 326-332, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29303472

RESUMO

OBJECTIVE Bilateral symptoms have been reported in 8%-35% of patients with sacroiliac (SI) joint dysfunction. Stabilization of a single SI joint may significantly alter the stresses on the contralateral SI joint. If the contralateral SI joint stresses are significantly increased, degeneration may occur; alternatively, if the stresses are significantly reduced, bilateral stabilization may be unnecessary for patients with bilateral symptoms. The biomechanical effects of 1) unilateral stabilization on the contralateral SI joint and 2) bilateral stabilization on both SI joints are currently unknown. The objectives of this study were to characterize bilateral SI joint range of motion (ROM) and evaluate and compare the biomechanical effects of unilateral and bilateral implant placement for SI joint fusion. METHODS A lumbopelvic model (L5-pelvis) was used to test the ROM of both SI joints in 8 cadavers. A single-leg stance setup was used to load the lumbar spine and measure the ROM of each SI joint in flexion-extension, lateral bending, and axial rotation. Both joints were tested 1) while intact, 2) after unilateral stabilization, and 3) after bilateral stabilization. Stabilization consisted of lateral transiliac placement of 3 triangular titanium plasma-sprayed (TPS) implants. RESULTS Intact testing showed that during single-leg stance the contralateral SI joint had less ROM in flexion-extension (27%), lateral bending (32%), and axial rotation (69%) than the loaded joint. Unilateral stabilization resulted in significant reduction of flexion-extension ROM (46%) on the treated side; no significant ROM changes were observed for the nontreated side. Bilateral stabilization resulted in significant reduction of flexion-extension ROM of the primary (45%) and secondary (75%) SI joints. CONCLUSIONS This study demonstrated that during single-leg loading the ROMs for the stance (loaded) and swing (unloaded) SI joints are significantly different. Unilateral stabilization for SI joint dysfunction significantly reduces the ROM of the treated side, but does not significantly reduce the ROM of the nontreated contralateral SI joint. Bilateral stabilization is necessary to significantly reduce the ROM for both SI joints.


Assuntos
Fenômenos Biomecânicos/fisiologia , Fixadores Internos , Vértebras Lombares/cirurgia , Articulação Sacroilíaca/cirurgia , Adulto , Parafusos Ósseos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Amplitude de Movimento Articular/fisiologia , Procedimentos de Cirurgia Plástica , Fusão Vertebral
14.
Int J Spine Surg ; 11: 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28765799

RESUMO

BACKGROUND: An aging society and concomitant rise in the incidence of impaired bone health have led to the need for advanced osteoconductive spinal implant surfaces that promote greater biological fixation (e.g. for interbody fusion cages, sacroiliac joint fusion implants, and artificial disc replacements). Additive manufacturing, i.e. 3D-printing, may improve bone integration by generating biomimetic spinal implant surfaces that mimic bone morphology. Such surfaces may foster an enhanced cellular response compared to traditional implant surfacing processes. METHODS: This study investigated the response of human osteoblasts to additive manufactured (AM) trabecular-like titanium implant surfaces compared to traditionally machined base material with titanium plasma spray (TPS) coated surfaces, with and without a nanocrystalline hydroxyapatite (HA) coating. For TPS-coated discs, wrought Ti6Al4V ELI was machined and TPS-coating was applied. For AM discs, Ti6Al4V ELI powder was 3D-printed to form a solid base and trabecular-like porous surface. The HA-coating was applied via a precipitation dip-spin method. Surface porosity, pore size, thickness, and hydrophilicity were characterized. Initial cell attachment, proliferation, alkaline phosphatase (ALP) activity, and calcium production of hFOB cells (n=5 per group) were measured. RESULTS: Cells on AM discs exhibited expedited proliferative activity. While there were no differences in mean ALP expression and calcium production between TPS and AM discs, calcium production on the AM discs trended 48% higher than on TPS discs (p=0.07). Overall, HA-coating did not further enhance results compared to uncoated TPS and AM discs. CONCLUSIONS: Results demonstrate that additive manufacturing allows for controlled trabecular-like surfaces that promote earlier cell proliferation and trends toward higher calcium production than TPS coating. Results further showed that nanocrystalline HA may not provide an advantage on porous titanium surfaces. CLINICAL RELEVANCE: Additive manufactured porous titanium surfaces may induce a more osteogenic environment compared to traditional TPS, and thus present as an attractive alternative to TPS-coating for orthopedic spinal implants.

15.
Int J Spine Surg ; 11: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28765800

RESUMO

BACKGROUND: Minimally invasive surgical fusion of the sacroiliac (SI) joint using machined solid triangular titanium plasma spray (TPS) coated implants has demonstrated positive clinical outcomes in SI joint pain patients. Additive manufactured (AM), i.e. 3D-printed, fenestrated triangular titanium implants with porous surfaces and bioactive agents, such as nanocrystalline hydroxyapatite (HA) or autograft, may further optimize bony fixation and subsequent biomechanical stability. METHODS: A bilateral ovine distal femoral defect model was used to evaluate the cancellous bone-implant interfaces of TPS-coated and AM implants. Four implant groups (n=6/group/time-point) were included: 1)TPS-coated, 2)AM, 3)AM+HA, and 4)AM+Autograft. The bone-implant interfaces of 6- and 12-week specimens were investigated via radiographic, biomechanical, and histomorphometric methods. RESULTS: Imaging showed peri-implant bone formation around all implants. Push-out testing demonstrated forces greater than 2500 N, with no significant differences among groups. While TPS implants failed primarily at the bone-implant interface, AM groups failed within bone ~2-3mm away from implant surfaces. All implants exhibited bone ongrowth, with no significant differences among groups. AM implants had significantly more bone ingrowth into their porous surfaces than TPS-coated implants (p<0.0001). Of the three AM groups, AM+Auto implants had the greatest bone ingrowth into the porous surface and through their core (p<0.002). CONCLUSIONS: Both TPS and AM implants exhibited substantial bone ongrowth and ingrowth, with additional bone through growth into the AM implants' core. Overall, AM implants experienced significantly more bone infiltration compared to TPS implants. While HA-coating did not further enhance results, the addition of autograft fostered greater osteointegration for AM implants. CLINICAL RELEVANCE: Additive manufactured implants with a porous surface provide a highly interconnected porous surface that has comparatively greater surface area for bony integration. Results suggest this may prove advantageous toward promoting enhanced biomechanical stability compared to TPS-coated implants for SI joint fusion procedures.

16.
Global Spine J ; 5(4): 282-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26225276

RESUMO

Study Design In vitro testing. Objective To determine whether long cervical and cervicothoracic fusions increase the intradiscal pressure at the adjacent caudal disk and to determine which thoracic end vertebra causes the least increase in the adjacent-level intradiscal pressure. Methods A bending moment was applied to six cadaveric cervicothoracic spine specimens with intact rib cages. Intradiscal pressures were recorded from C7-T1 to T9-10 before and after simulated fusion by anterior cervical plating and posterior thoracic pedicle screw constructs. The changes in the intradiscal pressure from baseline were calculated and compared. Results No significant differences where found when the changes of the juxtafusion intradiscal pressure at each level were compared for the flexion, extension, and left and right bending simulations. However, combining the pressures for all directions of bending at each level demonstrated a decrease in the pressures at the T2-T3 level. Exploratory analysis comparing changes in the pressure at T2-T3 to other levels showed a significant decrease in the pressures at this level (p = 0.005). Conclusions Based on the combined intradiscal pressures alone it may be advantageous to end long constructs spanning the cervicothoracic junction at the T2 level if there are no other mitigating factors.

17.
Spine (Phila Pa 1976) ; 40(9): E525-30, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25705956

RESUMO

STUDY DESIGN: A human cadaveric biomechanical study of 2 sacroiliac (SI) joint fusion implant placement techniques. OBJECTIVE: To evaluate and compare the biomechanical properties of 2 implant placement techniques for SI joint fusion. SUMMARY OF BACKGROUND DATA: Minimally invasive placement of SI joint fusion implants is a potential treatment of SI joint disruptions and degenerative sacroiliitis. Biomechanical studies of screw fixation within the sacrum have shown that placement and trajectory are important in the overall stability of the implant. Although clinical results have been promising, there is the possibility that a more optimal arrangement of implants may exist. METHODS: Bilateral SI joints in 7 cadaveric lumbopelvic (L4-pelvis) specimens were tested using a single leg stance model. All joints were tested intact, pubic symphysis sectioned, and treated (3 SI joint fusion implants). The implants were laterally placed using either a posterior or transarticular placement technique. The posterior technique places the implants inline in the inlet view, parallel in the outlet view, and parallel to the posterior sacral body in the lateral view. The transarticular technique places all implants across the articular portion of the SI joint. For all conditions, the range of motion was tested in flexion-extension, lateral bending, and axial rotation. RESULTS: The posterior technique significantly reduced the range of motion in flexion-extension, lateral bending, and axial rotation by 27% ± 24% (P = 0.024), 28% ± 26% (P = 0.028), and 32% ± 21% (P = 0.008), respectively. The transarticular technique significantly reduced the range of motion in flexion-extension, lateral bending, and axial rotation by 41% ± 31% (P = 0.013), 36% ± 38% (P = 0.049), and 36% ± 28% (P = 0.015), respectively. No significant differences were detected between the posterior and transarticular placement techniques (P > 0.25). CONCLUSION: Posterior and transarticular placement of SI joint fusion implants stabilized the SI joint in flexion-extension, lateral bending, and axial rotation. LEVEL OF EVIDENCE: N/A.


Assuntos
Artroplastia de Substituição/métodos , Amplitude de Movimento Articular/fisiologia , Articulação Sacroilíaca/fisiologia , Articulação Sacroilíaca/cirurgia , Adulto , Idoso , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos , Adulto Jovem
18.
Int J Spine Surg ; 9: 64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26767156

RESUMO

BACKGROUND: Adjacent segment disease is a recognized consequence of fusion in the spinal column. Fusion of the sacroiliac joint is an effective method of pain reduction. Although effective, the consequences of sacroiliac joint fusion and the potential for adjacent segment disease for the adjacent lumbar spinal levels is unknown. The objective of this study was to quantify the change in range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments due to sacroiliac joint fusion and compare these changes to previous literature to assess the potential for adjacent segment disease in the lumbar spine. METHODS: An experimentally validated finite element model of the lumbar spine and pelvis was used to simulate a fusion of the sacroiliac joint using three laterally placed triangular implants (iFuse Implant System, SI-BONE, Inc., San Jose, CA). The range of motion of the sacroiliac joint and the adjacent lumbar spinal motion segments were calculated using a hybrid loading protocol and compared with the intact range of motion in flexion, extension, lateral bending, and axial rotation. RESULTS: The range of motions of the treated sacroiliac joints were reduced in flexion, extension, lateral bending, and axial rotation, by 56.6%, 59.5%, 27.8%, and 53.3%, respectively when compared with the intact condition. The stiffening of the sacroiliac joint resulted in increases at the adjacent lumbar motion segment (L5-S1) for flexion, extension, lateral bending, and axial rotation, of 3.0%, 3.7%, 1.1%, and 4.6%, respectively. CONCLUSIONS: Fusion of the sacroiliac joint resulted in substantial (> 50%) reductions in flexion, extension, and axial rotation of the sacroiliac joint with minimal (< 5%) increases in range of motion in the lumbar spine. Although the predicted increases in lumbar range of motion are minimal after sacroiliac joint fusion, the long-term clinical results remain to be investigated.

19.
Med Devices (Auckl) ; 7: 131-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24868175

RESUMO

INTRODUCTION: Sacroiliac (SI) joint pain has become a recognized factor in low back pain. The purpose of this study was to investigate the effect of a minimally invasive surgical SI joint fusion procedure on the in vitro biomechanics of the SI joint before and after cyclic loading. METHODS: SEVEN CADAVERIC SPECIMENS WERE TESTED UNDER THE FOLLOWING CONDITIONS: intact, posterior ligaments (PL) and pubic symphysis (PS) cut, treated (three implants placed), and after 5,000 cycles of flexion-extension. The range of motion (ROM) in flexion-extension, lateral bending, and axial rotation was determined with an applied 7.5 N · m moment using an optoelectronic system. Results for each ROM were compared using a repeated measures analysis of variance (ANOVA) with a Holm-Sidák post-hoc test. RESULTS: Placement of three fusion devices decreased the flexion-extension ROM. Lateral bending and axial rotation were not significantly altered. All PL/PS cut and post-cyclic ROMs were larger than in the intact condition. The 5,000 cycles of flexion-extension did not lead to a significant increase in any ROMs. DISCUSSION: In the current model, placement of three 7.0 mm iFuse Implants significantly decreased the flexion-extension ROM. Joint ROM was not increased by 5,000 flexion-extension cycles.

20.
Plast Reconstr Surg ; 133(1): 79-89, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24374670

RESUMO

BACKGROUND: Restoration of biomechanical strength following surgical reconstruction of tendon or ligament insertion tears is challenging because these injuries typically heal as fibrous scars. The authors hypothesize that injuries at the tendon-bone interface would benefit from reconstruction with decellularized composite tendon-bone grafts. METHODS: Tendon-bone grafts were harvested from Sprague-Dawley rats. Grafts subjected to decellularization were compared histologically and biomechanically with untreated grafts ex vivo and in a new in vivo model. Wistar rats underwent Sprague-Dawley allograft reconstruction using a pair-matched design. The rats were killed at 2 or 4 weeks. B-cell and macrophage infiltration was determined using immunohistochemistry, and explants were tested biomechanically. RESULTS: Decellularization resulted in a decrease in cells from 164 ± 61 (untreated graft) to 13 ± 7 cells per high-power field cells (p < 0.005) and a corresponding significant decrease in DNA content, and preserved scaffold architecture of the tendon-bone interface. Biomechanical comparison revealed no difference in failure load (p = 0.32), ultimate tensile stress (p = 0.76), or stiffness (p = 0.22) between decellularized grafts and untreated controls. Following in vivo reconstruction with tendon-bone interface grafts, decellularized grafts were stronger than untreated grafts at 2 weeks (p = 0.047) and at 4 weeks (p < 0.005). A persistent increase in B-cell and macrophage infiltration was observed in both the capsule surrounding the tendon-bone interface and the tendon substance in untreated controls. CONCLUSION: Decellularized tendon-bone grafts display better biomechanical properties at early healing time points and a decreased immune response compared with untreated grafts in vivo.


Assuntos
Tendão do Calcâneo/transplante , Transplante Ósseo/métodos , Traumatismos dos Tendões/cirurgia , Alicerces Teciduais , Alotransplante de Tecidos Compostos Vascularizados/métodos , Tendão do Calcâneo/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Calcâneo/cirurgia , Modelos Animais de Doenças , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Procedimentos de Cirurgia Plástica/métodos , Recuperação de Função Fisiológica/fisiologia , Traumatismos dos Tendões/fisiopatologia , Engenharia Tecidual/métodos , Coleta de Tecidos e Órgãos/métodos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...