Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 11(3): 895-903, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24422996

RESUMO

Lipid-based liquid crystalline compositions of phospholipids and diglycerides have unique bioadhesive properties with several medical applications, as exemplified by a lipid-based medical device indicated for management and relief of intraoral pain. The present paper describes the relation between self-assembly properties of phosphatidyl choline (PC) and glycerol dioleate (GDO) mixtures in the presence of aqueous fluids and functional attributes of the system, including: film formation and bioadhesion, intraoral coverage, acceptance by patients, and potential as a drug delivery system. The phase behavior of PC/GDO was characterized using synchrotron small-angle X-ray scattering. Functional properties, including the presence of study formulations at intraoral surfaces, ease of attachment, taste, and degree of and intraoral pain, were assessed in a crossover clinical pilot study in head and neck cancer patients. An optimum in functional properties was indicated for formulations with a PC/GDO weight ratio of about 35/65, where the lipids form a reversed cubic liquid crystalline micellar phase structure (Fd3m space group) over the relevant temperature range (25-40 °C).


Assuntos
Química Farmacêutica , Neoplasias de Cabeça e Pescoço/patologia , Lipídeos/química , Cristais Líquidos/química , Boca/patologia , Nanopartículas/administração & dosagem , Úlceras Orais/patologia , Preparações Farmacêuticas/química , Animais , Adesão Celular , Estudos Cross-Over , Diglicerídeos/química , Diglicerídeos/metabolismo , Método Duplo-Cego , Sistemas de Liberação de Medicamentos , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Lipídeos/administração & dosagem , Masculino , Mesocricetus , Micelas , Boca/efeitos dos fármacos , Boca/metabolismo , Úlceras Orais/tratamento farmacológico , Úlceras Orais/metabolismo , Transição de Fase , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Projetos Piloto , Polissorbatos , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Tensoativos/química , Síncrotrons , Água/química
2.
Cell Biochem Biophys ; 52(3): 175-89, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18975139

RESUMO

Aberrant folded proteins and peptides are hallmarks of amyloidogenic diseases. However, the molecular processes that cause these proteins to adopt non-native structures in vivo and become cytotoxic are still largely unknown, despite intense efforts to establish a general molecular description of their behavior. Clearly, the fate of these proteins is ultimately linked to their immediate biochemical environment in vivo. In this review, we focus on the role of biological membranes, reactive interfaces that not only affect the conformational stability of amyloidogenic proteins, but also their aggregation rates and, probably, their toxicity. We first provide an overview of recent work, starting with findings regarding the amphiphatic amyloid-beta protein (Abeta), which give evidence that membranes can directly promote aggregation, and that the effectiveness in this process can be related to the presence of specific neuronal ganglioside lipids. In addition, we discuss the implications of recent research (medin as an detailed example) regarding putative roles of membranes in the misfolding behavior of soluble, non-amphiphatic proteins, which are attracting increasing interest. The potential role of membranes in exerting the toxic action of misfolded proteins will also be highlighted in a molecular context. In this review, we discuss novel NMR-based approaches for exploring membrane-protein interactions, and findings obtained using them, which we use to develop a molecular concept to describe membrane-mediated protein misfolding as a quasi-two-dimensional process rather than a three-dimensional event in a biochemical environment. The aim of the review is to provide researchers with a general understanding of the involvement of membranes in folding/misfolding processes in vivo, which might be quite universal and important for future research concerning amyloidogenic and misfolding proteins, and possible ways to prevent their toxic actions.


Assuntos
Peptídeos beta-Amiloides/química , Membrana Celular/química , Proteínas de Membrana/química , Sequência de Aminoácidos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antígenos de Superfície/metabolismo , Antígenos de Superfície/ultraestrutura , Membrana Celular/metabolismo , Gangliosídeos/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Leite/metabolismo , Proteínas do Leite/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Dobramento de Proteína
3.
Chem Phys Lipids ; 154(1): 26-32, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18407834

RESUMO

Differential scanning calorimetry (DSC) has been applied to study the effect of free hydroxylated and methyl-branched fatty acids on the physico-chemical properties of lipid membranes. First, the impact of free hydroxy fatty acids (HFAs) on dimyristoylphosphatidylcholine (DMPC) model membranes was monitored only as a function of chain length and position of the attached hydroxyl group. Second, racemic vs. enantiopure anteiso fatty acids (AFAs) and HFAs were investigated to address the question of which role does a fatty acid's chirality play on its membrane pertubing effect. The DSC thermograms revealed that the main gel to liquid-crystalline phase transition of the DMPC bilayers which results in a disordering effect of the lipid hydrocarbon chains was affected in different ways depending on the nature of the incorporated fatty acid. Long-chain 2- and 3-HFAs stabilized the gel phase by reducing the phase transition temperature (T(m)), whereas short-chain HFAs and long-chain HFAs with the hydroxy group remote from the head group stabilized the more disordered liquid-crystalline state. Additionally, we observed that enantiopure (S)-14-methylhexadecanoic acid ((S)-a17:0) and (R)-2-hydroxy octadecanoic acid and the corresponding racemates had contrary effects upon incorporation into DMPC bilayers. In both cases, the pure enantiomers alleviated the liquid-crystalline state of the biological model membrane.


Assuntos
Dimiristoilfosfatidilcolina/química , Ácidos Graxos/química , Hidroxiácidos/química , Bicamadas Lipídicas/química , Transição de Fase , Varredura Diferencial de Calorimetria , Membrana Celular/química , Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/metabolismo , Ácidos Graxos/metabolismo , Hidroxiácidos/metabolismo , Bicamadas Lipídicas/metabolismo , Estrutura Molecular , Ácidos Palmíticos/química , Ácidos Palmíticos/metabolismo , Estereoisomerismo , Temperatura
4.
Eur Biophys J ; 37(3): 247-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18030461

RESUMO

The fate of proteins with amyloidogenic properties depends critically on their immediate biochemical environment. However, the role of biological interfaces such as membrane surfaces, as promoters of pathological aggregation of amyloidogenic proteins, is rarely studied and only established for the amyloid-beta protein (A beta) involved in Alzheimer's disease, and alpha-synuclein in Parkinsonism. The occurrence of binding and misfolding of these proteins on membrane surfaces, is poorly understood, not at least due to the two-dimensional character of this event. Clearly, the nature of the folding pathway for A beta protein adsorbed upon two-dimensional aggregation templates, must be fundamentally different from the three-dimensional situation in solution. Here, we summarize the current research and focus on the function of membrane interfaces as aggregation templates for amyloidogenic proteins (and even prionic ones). One major aspect will be the relationship between membrane properties and protein association and the consequences for amyloidogenic products. The other focus will be on a general understanding of protein folding pathways on two-dimensional templates on a molecular level. Finally, we will demonstrate the potential importance of membrane-mediated aggregation for non-amphiphatic soluble amyloidogenic proteins, by using the SOD1 protein involved in the amyotrophic lateral sclerosis syndrome.


Assuntos
Membrana Celular/química , Membrana Celular/patologia , Complexos Multiproteicos/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Dimerização , Humanos , Complexos Multiproteicos/química , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Solubilidade , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Propriedades de Superfície , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
5.
Phys Chem Chem Phys ; 8(41): 4792-7, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17043723

RESUMO

Here, we exploit the non-invasive techniques of solid-state NMR (nuclear magnetic resonance) and differential scanning calorimetry (DSC) to study the effect of free iso and ante-iso branched chain fatty acids (BCFAs) on the physicochemical properties of lipid membranes. Free fatty acids are present in biological membranes at low abundance, but can influence the cellular function by modulating the membrane organization. Solid state NMR spectra of dimyristoylphosphatidylcholine (DMPC) lipid membranes containing either free 12-methyltetradecanoic acid (a15:0) or free 13-methyltetradecanoic acid (i15:0), show significant differences in their impact on the lipid bilayer. Chain order profiles obtained by deuterium NMR on fully deuterated DMPC-d(67) bilayers revealed an ordering effect induced by both fatty acids on the hydrophobic membrane core. This behavior was also visible in the corresponding DSC thermograms where the main phase transition of DMPC bilayers-indicative of the hydrophobic membrane region-was shifted to higher temperatures, with the iso isomer triggering more pronounced changes as compared to the ante-iso isomer. This is probably due to a higher packing density in the core of the lipid bilayer, which causes reduced diffusion across membranes. By utilizing the naturally occurring spin reporters nitrogen-14 and phosphorus-31 present in the hydrophilic DMPC headgroup region, even fatty acid induced changes at the membrane interface could be detected, an observation reflecting changes in the lipid headgroup dynamics.


Assuntos
Dimiristoilfosfatidilcolina/análise , Ácidos Graxos/análise , Lipídeos de Membrana/análise , Ácidos Mirísticos/análise , Água/química , Varredura Diferencial de Calorimetria , Deutério/química , Dimiristoilfosfatidilcolina/química , Ácidos Graxos/química , Interações Hidrofóbicas e Hidrofílicas , Isomerismo , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/química , Ácidos Mirísticos/química , Transição de Fase , Temperatura
6.
J Am Chem Soc ; 127(18): 6610-6, 2005 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15869282

RESUMO

Exploiting naturally abundant (14)N and (31)P nuclei by high-resolution MAS NMR (magic angle spinning nuclear magnetic resonance) provides a molecular view of the electrostatic potential present at the surface of biological model membranes, the electrostatic charge distribution across the membrane interface, and changes that occur upon peptide association. The spectral resolution in (31)P and (14)N MAS NMR spectra is sufficient to probe directly the negatively charged phosphate and positively charged choline segment of the electrostatic P(-)-O-CH(2)-CH(2)-N(+)(CH(3))(3) headgroup dipole of zwitterionic DMPC (dimyristoylphosphatidylcholine) in mixed-lipid systems. The isotropic shifts report on the size of the potential existing at the phosphate and ammonium group within the lipid headgroup while the chemical shielding anisotropy ((31)P) and anisotropic quadrupolar interaction ((14)N) characterize changes in headgroup orientation in response to surface potential. The (31)P/(14)N isotropic chemical shifts for DMPC show opposing systematic changes in response to changing membrane potential, reflecting the size of the electrostatic potential at opposing ends of the P(-)-N(+) dipole. The orientational response of the DMPC lipid headgroup to electrostatic surface variations is visible in the anisotropic features of (14)N and (31)P NMR spectra. These features are analyzed in terms of a modified "molecular voltmeter" model, with changes in dynamic averaging reflecting the tilt of the C(beta)-N(+)(CH)(3) choline and PO(4)(-) segment. These properties have been exploited to characterize the changes in surface potential upon the binding of nociceptin to negatively charged membranes, a process assumed to proceed its agonistic binding to its opoid G-protein coupled receptor.


Assuntos
Dimiristoilfosfatidilcolina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos Opioides/química , Fosfatidilgliceróis/química , Anisotropia , Ligantes , Potenciais da Membrana , Membranas Artificiais , Isótopos de Nitrogênio , Peptídeos Opioides/metabolismo , Fósforo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Eletricidade Estática , Nociceptina
7.
J Mol Biol ; 335(4): 1039-49, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14698298

RESUMO

The 39-42 amino acid long, amphipathic amyloid-beta peptide (Abeta) is one of the key components involved in Alzheimer's disease (AD). In the neuropathology of AD, Abeta presumably exerts its neurotoxic action via interactions with neuronal membranes. In our studies a combination of 31P MAS NMR (magic angle spinning nuclear magnetic resonance) and CD (circular dichroism) spectroscopy suggest fundamental differences in the functional organization of supramolecular Abeta(1-40) membrane assemblies for two different scenarios with potential implication in AD: Abeta peptide can either be firmly anchored in a membrane upon proteolytic cleavage, thereby being prevented against release and aggregation, or it can have fundamentally adverse effects when bound to membrane surfaces by undergoing accelerated aggregation, causing neuronal apoptotic cell death. Acidic lipids can prevent release of membrane inserted Abeta(1-40) by stabilizing its hydrophobic transmembrane C-terminal part (residue 29-40) in an alpha-helical conformation via an electrostatic anchor between its basic Lys28 residue and the negatively charged membrane interface. However, if Abeta(1-40) is released as a soluble monomer, charged membranes act as two-dimensional aggregation-templates where an increasing amount of charged lipids (possible pathological degradation products) causes a dramatic accumulation of surface-associated Abeta(1-40) peptide followed by accelerated aggregation into toxic structures. These results suggest that two different molecular mechanisms of peptide-membrane assemblies are involved in Abeta's pathophysiology with the finely balanced type of Abeta-lipid interactions against release of Abeta from neuronal membranes being overcompensated by an Abeta-membrane assembly which causes toxic beta-structured aggregates in AD. Therefore, pathological interactions of Abeta peptide with neuronal membranes might not only depend on the oligomerization state of the peptide, but also the type and nature of the supramolecular Abeta-membrane assemblies inherited from Abeta's origin.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer , Dicroísmo Circular , Dimiristoilfosfatidilcolina/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Fosfatidilgliceróis/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA