Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441552

RESUMO

The mammary gland is a unique organ that undergoes dynamic alterations throughout a female's reproductive life, making it an ideal model for developmental, stem cell and cancer biology research. Mammary gland development begins in utero and proceeds via a quiescent bud stage before the initial outgrowth and subsequent branching morphogenesis. How mammary epithelial cells transit from quiescence to an actively proliferating and branching tissue during embryogenesis and, importantly, how the branch pattern is determined remain largely unknown. Here, we provide evidence indicating that epithelial cell proliferation and onset of branching are independent processes, yet partially coordinated by the Eda signaling pathway. Through heterotypic and heterochronic epithelial-mesenchymal recombination experiments between mouse mammary and salivary gland tissues and ex vivo live imaging, we demonstrate that unlike previously concluded, the mode of branching is an intrinsic property of the mammary epithelium whereas the pace of growth and the density of ductal tree are determined by the mesenchyme. Transcriptomic profiling and ex vivo and in vivo functional studies in mice disclose that mesenchymal Wnt/ß-catenin signaling, and in particular IGF-1 downstream of it critically regulate mammary gland growth. These results underscore the general need to carefully deconstruct the different developmental processes producing branched organs.


Assuntos
Células Epiteliais , Via de Sinalização Wnt , Camundongos , Animais , Epitélio/metabolismo , Células Epiteliais/fisiologia , Proliferação de Células , Morfogênese , Mesoderma , Glândulas Mamárias Animais/metabolismo
2.
Methods Mol Biol ; 2471: 1-18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35175589

RESUMO

Mammary gland development starts during embryogenesis, and the process continues after birth. During development, the mammary gland undergoes massive morphological and physiological alterations including growth, invasion, and branching morphogenesis providing an ideal model for stem cell and cancer biology studies. Great efforts have been made in understanding mammary gland development during puberty and adulthood; however, the process during embryogenesis is still elusive. One reason is that the tools to study tissue dynamics during development are limited, which is partially due to the lack of an ex vivo culture method. Here we describe an updated organ culture protocol of the murine embryonic mammary gland. This powerful tool allows monitoring of growth and branching morphogenesis of mammary gland ex vivo by live imaging. In addition, we introduce a novel method for culturing intact, stroma-free mammary rudiments from late gestation mouse embryos in 3D in Matrigel. This approach can be used to identify the direct stromal cues for branching morphogenesis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Feminino , Camundongos , Morfogênese , Técnicas de Cultura de Órgãos , Gravidez
3.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34042944

RESUMO

The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes-ring cells-that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.


Assuntos
Actomiosina/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Mecanotransdução Celular , Animais , Proliferação de Células , Células Epiteliais/ultraestrutura , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Hipertrofia , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/ultraestrutura , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Morfogênese
4.
BMC Genet ; 18(1): 52, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578657

RESUMO

BACKGROUND: Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) and Cerebral Dopamine Neurotrophic Factor (CDNF) form an evolutionarily conserved family of neurotrophic factors. Orthologues for MANF/CDNF are the only neurotrophic factors as yet identified in invertebrates with conserved amino acid sequence. Previous studies indicate that mammalian MANF and CDNF support and protect brain dopaminergic system in non-cell-autonomous manner. However, MANF has also been shown to function intracellularly in the endoplasmic reticulum. To date, the knowledge on the interacting partners of MANF/CDNF and signaling pathways they activate is rudimentary. Here, we have employed the Drosophila genetics to screen for potential interaction partners of Drosophila Manf (DmManf) in vivo. RESULTS: We first show that DmManf plays a role in the development of Drosophila wing. We exploited this function by using Drosophila UAS-RNAi lines and discovered novel genetic interactions of DmManf with genes known to function in the mitochondria. We also found evidence of an interaction between DmManf and the Drosophila homologue encoding Ku70, the closest structural homologue of SAP domain of mammalian MANF. CONCLUSIONS: In addition to the previously known functions of MANF/CDNF protein family, DmManf also interacts with mitochondria-related genes. Our data supports the functional importance of these evolutionarily significant proteins and provides new insights for the future studies.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genes Mitocondriais , Fatores de Crescimento Neural/metabolismo , Ubiquinona/biossíntese , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Feminino , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Masculino , Fatores de Crescimento Neural/genética , RNA Interferente Pequeno , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
5.
PLoS One ; 11(3): e0151550, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26975047

RESUMO

Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fatores de Crescimento Neural/metabolismo , Resposta a Proteínas não Dobradas/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Epistasia Genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Teste de Complementação Genética , Modelos Biológicos , Fatores de Crescimento Neural/genética , Fenótipo , Splicing de RNA/genética , Regulação para Cima/genética
6.
PLoS One ; 8(9): e73928, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24019940

RESUMO

Mammalian MANF and CDNF proteins are evolutionarily conserved neurotrophic factors that can protect and repair mammalian dopaminergic neurons in vivo. In Drosophila, the sole MANF protein (DmManf) is needed for the maintenance of dopaminergic neurites and dopamine levels. Although both secreted and intracellular roles for MANF and CDNF have been demonstrated, very little is known about the molecular mechanism of their action. Here, by using a transgenic rescue approach in the DmManf mutant background we show that only full-length MANF containing both the amino-terminal saposin-like and carboxy-terminal SAP-domains can rescue the larval lethality of the DmManf mutant. Independent N- or C-terminal domains of MANF, even when co-expressed together, fail to rescue. Deleting the signal peptide or mutating the CXXC motif in the C-terminal domain destroys the activity of full-length DmManf. Positively charged surface amino acids and the C-terminal endoplasmic reticulum retention signal are necessary for rescue of DmManf mutant lethality when DmManf is expressed in a restricted pattern. Furthermore, rescue experiments with non-ubiquitous expression reveals functional differences between the C-terminal domain of human MANF and CDNF. Finally, DmManf and its C-terminal domain rescue mammalian sympathetic neurons from toxin-induced apoptosis in vitro demonstrating functional similarity of the mammalian and fly proteins. Our study offers further insights into the functional conservation between invertebrate and mammalian MANF/CDNF proteins and reveals the importance of the C-terminal domain for MANF activity in vivo.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Apoptose/fisiologia , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Genes Letais , Humanos , Larva/metabolismo , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Conformação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
7.
BMC Genomics ; 13: 134, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22494833

RESUMO

BACKGROUND: MANF and CDNF are evolutionarily conserved neurotrophic factors that specifically support dopaminergic neurons. To date, the receptors and signalling pathways of this novel MANF/CDNF family have remained unknown. Independent studies have showed upregulation of MANF by unfolded protein response (UPR). To enlighten the role of MANF in multicellular organism development we carried out a microarray-based analysis of the transcriptional changes induced by the loss and overexpression of Drosophila Manf. RESULTS: The most dramatic change of expression was observed with genes coding membrane transport proteins and genes related to metabolism. When evaluating in parallel the ultrastructural data and transcriptome changes of maternal/zygotic and only zygotic Manf mutants, the endoplasmic reticulum (ER) stress and membrane traffic alterations were evident. In Drosophila Manf mutants the expression of several genes involved in Parkinson's disease (PD) was altered as well. CONCLUSIONS: We conclude that besides a neurotrophic factor, Manf is an important cellular survival factor needed to overcome the UPR especially in tissues with high secretory function. In the absence of Manf, the expression of genes involved in membrane transport, particularly exocytosis and endosomal recycling pathway was altered. In neurodegenerative diseases, such as PD, correct protein folding and proteasome function as well as neurotransmitter synthesis and uptake are crucial for the survival of neurons. The degeneration of dopaminergic neurons is the hallmark for PD and our work provides a clue on the mechanisms by which the novel neurotrophic factor MANF protects these neurons.


Assuntos
Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Perfilação da Expressão Gênica , Mutação , Fatores de Crescimento Neural/genética , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico/genética , Metabolismo dos Carboidratos/genética , Ciclo Celular/genética , Morte Celular/genética , DNA/biossíntese , DNA/metabolismo , Dopamina/biossíntese , Drosophila/citologia , Drosophila/embriologia , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exocitose/genética , Feminino , Hidrolases/metabolismo , Padrões de Herança/genética , Larva/citologia , Larva/enzimologia , Larva/genética , Larva/metabolismo , Lisossomos/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fatores de Crescimento Neural/metabolismo , Dobramento de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética , Resposta a Proteínas não Dobradas/genética
8.
Proc Natl Acad Sci U S A ; 106(7): 2429-34, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19164766

RESUMO

In vertebrates the development and function of the nervous system is regulated by neurotrophic factors (NTFs). Despite extensive searches no neurotrophic factors have been found in invertebrates. However, cell ablation studies in Drosophila suggest trophic interaction between neurons and glia. Here we report the invertebrate neurotrophic factor in Drosophila, DmMANF, homologous to mammalian MANF and CDNF. DmMANF is expressed in glia and essential for maintenance of dopamine positive neurites and dopamine levels. The abolishment of both maternal and zygotic DmMANF leads to the degeneration of axonal bundles in the embryonic central nervous system and subsequent nonapoptotic cell death. The rescue experiments confirm DmMANF as a functional ortholog of the human MANF gene thus opening the window for comparative studies of this protein family with potential for the treatment of Parkinson's disease.


Assuntos
Proteínas de Drosophila/fisiologia , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Dopamina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Doença de Parkinson/terapia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA