Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(5): 942-957, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357134

RESUMO

Ebola virus (EBOV) is an aggressive filoviral pathogen that can induce severe hemorrhagic fever in humans with up to 90% fatality rate. To date, there are no clinically effective small-molecule drugs for postexposure therapies to treat filoviral infections. EBOV cellular entry and infection involve uptake via macropinocytosis, navigation through the endocytic pathway, and pH-dependent escape into the cytoplasm. We report the inhibition of EBOV cell entry via selective inhibition of vacuolar (V)-ATPase by a new series of phenol-substituted derivatives of the natural product scaffold diphyllin. In cells challenged with Ebola virus, the diphyllin derivatives inhibit viral entry dependent upon structural variations to low nanomolar potencies. Mechanistically, the diphyllin derivatives had no effect on uptake and colocalization of viral particles with endocytic marker LAMP1 but directly modulated endosomal pH. The most potent effects were reversible exhibiting higher selectivity than bafilomycin or the parent diphyllin. Unlike general lysosomotrophic agents, the diphyllin derivatives showed no major disruptions of endocytic populations or morphology when examined with Rab5 and LAMP1 markers. The dilated vacuole phenotype induced by apilimod treatment or in constitutively active Rab5 mutant Q79L-expressing cells was both blocked and reversed by the diphyllin derivatives. The results are consistent with the action of the diphyllin scaffold as a selective pH-dependent viral entry block in late endosomes. Overall, the compounds show improved selectivity and minimal cytotoxicity relative to classical endosomal acidification blocking agents.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Benzodioxóis/farmacologia , Doença pelo Vírus Ebola/tratamento farmacológico , Humanos , Lignanas , Fenol/farmacologia , Fenol/uso terapêutico , Internalização do Vírus
2.
Antimicrob Agents Chemother ; 60(8): 4471-81, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161622

RESUMO

Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Marburgvirus/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Ebolavirus/genética , Ebolavirus/metabolismo , Células HeLa , Humanos , Marburgvirus/genética , Marburgvirus/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA