Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161288, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587668

RESUMO

Harmful algal blooms (HABs) in southern Chile are a serious threat to public health, tourism, artisanal fisheries, and aquaculture in this region. Ichthyotoxic HAB species have recently become a major annual threat to the Chilean salmon farming industry, due to their severe economic impacts. In early austral autumn 2021, an intense bloom of the raphidophyte Heterosigma akashiwo was detected in Comau Fjord, Chilean Patagonia, resulting in a high mortality of farmed salmon (nearly 6000 tons of biomass) within 15 days. H. akashiwo cells were first detected at the head of the fjord on March 16, 2021 (up to 478 cells mL-1). On March 31, the cell density at the surface had reached a maximum of 2 × 105 cells mL-1, with intense brown spots visible on the water surface. Strong and persistent high-pressure anomalies over the southern tip of South America, consistent with the positive phase of the Southern Annular Mode (SAM), resulted in extremely dry conditions, high solar radiation, and strong southerly winds. A coupling of these features with the high water retention times inside the fjord can explain the spatial-temporal dynamics of this bloom event. Other factors, such as the internal local physical uplift process (favored by the north-to-south orientation of the fjord), salt-fingering events, and the uplift of subantarctic deep-water renewal, likely resulted in the injection of nutrients into the euphotic layer, which in turn could have promoted cell growth and thus high microalgal cell densities, such as reached by the bloom.


Assuntos
Estuários , Microalgas , Animais , Mudança Climática , Proliferação Nociva de Algas , Salmão , Chile , Água
2.
Mar Pollut Bull ; 184: 114103, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36115195

RESUMO

Harmful Algal Blooms (HAB) pose a severe socio-economic problem worldwide. The dinoflagellate species Alexandrium catenella produces potent neurotoxins called saxitoxins (STXs) and its blooms are associated with the human intoxication named Paralytic Shellfish Poisoning (PSP). Knowing where and how these blooms originate is crucial to predict blooms. Most studies in the Chilean Patagonia, were focused on coastal areas, considering that blooms from the adjacent oceanic region are almost non-existent. Using a combination of field studies and modelling approaches, we first evaluated the role of the continental shelf off northern Chilean Patagonia as a source of A. catenella resting cysts, which may act as inoculum for their toxic coastal blooms. This area is characterized by a seasonal upwelling system with positive Ekman pumping during spring-summer, and by the presence of six major submarine canyons. We found out that these submarine canyons increase the vertical advection of bottom waters, and thus, significantly enhance the process of coastal upwelling. This is a previously unreported factor, among those involved in bloom initiation. This finding put this offshore area at high risk of resuspension of resting cysts of A. catenella. Here, we discuss in detail the physical processes promoting this resuspension.


Assuntos
Cistos , Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Chile , Proliferação Nociva de Algas , Oceanos e Mares
3.
Sci Total Environ ; 798: 149241, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34333429

RESUMO

The postglacial Patagonian fjord system along the west coast of southern South America is one of the largest stretches of the southern hemisphere (SH) fjord belt, influenced by the SH westerly wind belt and continental freshwater input. This study reports a 3-year monthly time series (2017-2020) of physical and biogeochemical parameters obtained from the Reloncaví Marine Observatory (OMARE, Spanish acronym) at the northernmost embayment and fjord system of Patagonia. The main objective of this work was to understand the land-atmosphere-ocean interactions and to identify the mechanisms that modulate the density of phytoplankton. A key finding of this study was the seasonally varying asynchronous input of oceanic and estuarine water. Surface lower salinity and warmer estuarine water arrived in late winter to summer, contributing to water column stability, followed by subsurface higher salinity and less warmer oceanic water during fall-winter. In late winter 2019, an interannual change above the picnocline due to the record-high polarity of the Indian Ocean Dipole inhibited water column stability. The biogeochemical parameters (NO3-, NO2-, PO43-, Si(OH)4, pH, and dissolved oxygen) responded to the surface annual salinity variations, and oceanic water mass contributed greatly to the subsurface inorganic nutrient input. The water column N/P ratio indicated that no eutrophication occurred, even under intense aquaculture activity, likely because of the high ventilation dynamics of the Reloncaví Sound. Finally, a shift in phytoplankton composition, characterized by surface chlorophyll-a maxima in late winter and deepening of spring-summer blooms related to the physicochemical conditions of the water column, was observed. Our results support the ecosystem services provided by local oceanography processes in the north Patagonian fjords. Here, the anthropogenic impact caused by economic activities could be, in part, chemically reduced by the annual ventilation cycle mediated by the exchange of oceanic water masses into Patagonian fjords.


Assuntos
Ecossistema , Estuários , Monitoramento Ambiental , Oceano Índico , Oceanografia , Fitoplâncton , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...