Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(5): 4156-4181, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175762

RESUMO

Our previous work found that the clinical histone deacetylase (HDAC) inhibitor quisinostat exhibited a significant antimalarial effect but with severe toxicity. In this work, 35 novel derivatives were designed and synthesized based on quisinostat as the lead compound, and their in vitro antimalarial activities and cytotoxicities were systematically evaluated. Among them, JX35 showed potent inhibition against both wild-type and multidrug-resistant parasite strains and displayed a significant in vivo killing effect against all life cycles of parasites, including the blood stage, liver stage, and gametocyte stage, indicating its potential for the simultaneous treatment, chemoprevention, and blockage of malaria transmission. Compared with quisinostat, JX35 exhibited stronger antimalarial efficacy, more adequate safety, and good pharmacokinetic properties. Additionally, mechanistic studies via molecular docking studies, induced PfHDAC1/2 knockdown assays, and PfHDAC1 enzyme inhibition assays jointly indicated that the antimalarial target of JX35 was PfHDAC1. In summary, we discovered the promising candidate PfHDAC1 inhibitor JX35, which showed stronger triple-stage antimalarial effects and lower toxicity than quisinostat.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Plasmodium falciparum
2.
J Med Chem ; 64(4): 2254-2271, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33541085

RESUMO

Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.


Assuntos
Antimaláricos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Desenho de Fármacos , Reposicionamento de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
3.
Cell Discov ; 6(1): 93, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311461

RESUMO

Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.

4.
ACS Chem Neurosci ; 9(7): 1625-1636, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29616790

RESUMO

On the basis of the drug-repositioning and redeveloping strategy, first-generation dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) have been recently reported as a potentially novel therapeutic method for the treatment of Alzheimer's disease (AD), and the lead compound 2 has proven this method was feasible in AD mouse models. In this study, our work focused on exploring alternative novel tadalafil derivatives (3a-s). Among the 19 analogues, compound 3c exhibited good selective dual-target AChE/PDE5 inhibition and good blood-brain barrier (BBB) permeability. Moreover, its citrate (3c·Cit) possessed improved water solubility and good effects against scopolamine-induced cognitive impairment with inhibition of cortical AChE activities and enhancement of cAMP response element-binding protein (CREB) phosphorylation ex vivo.


Assuntos
Inibidores da Colinesterase/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Tadalafila/análogos & derivados , Acetilcolinesterase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Disfunção Cognitiva/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos ICR , Estrutura Molecular , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Distribuição Aleatória , Escopolamina
5.
ACS Med Chem Lett ; 9(3): 233-237, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541366

RESUMO

Diapophytoene desaturase (CrtN) is a potential novel target for intervening in the biosynthesis of the virulence factor staphyloxanthin. In this study, 38 1,4-benzodioxan-derived CrtN inhibitors were designed and synthesized to overwhelm the defects of leading compound 4a. Derivative 47 displayed superior pigment inhibitory activity, better hERG inhibitory properties and water solubility, and significantly sensitized MRSA strains to immune clearance in vitro. Notably, 47 displayed excellent efficacy against pigmented S. aureus Newman, Mu50 (vancomycin-intermediate MRSA, VISA), and NRS271 (linezolid-resistant MRSA, LRSA) comparable to that of linezolid and vancomycin in vivo.

6.
ACS Chem Neurosci ; 9(2): 328-345, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29068218

RESUMO

Through drug discovery strategies of repurposing and redeveloping existing drugs, a series of novel tadalafil derivatives were rationally designed, synthesized, and evaluated to seek dual-target AChE/PDE5 inhibitors as good candidate drugs for Alzheimer's disease (AD). Among these derivatives, 1p and 1w exhibited excellent selective dual-target AChE/PDE5 inhibitory activities and improved blood-brain barrier (BBB) penetrability. Importantly, 1w·Cit (citrate of 1w) could reverse the cognitive dysfunction of scopolamine-induced AD mice and exhibited an excellent effect on enhancing cAMP response element-binding protein (CREB) phosphorylation in vivo, a crucial factor in memory formation and synaptic plasticity. Moreover, the molecular docking simulations of 1w with hAChE and hPDE5A confirmed that our design strategy was rational. In summary, our research provides a potential selective dual-target AChE/PDE5 inhibitor as a good candidate drug for the treatment of AD, and it could also be regarded as a small molecule probe to validate the novel AD therapeutic approach in vivo.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Inibidores da Fosfodiesterase 5/síntese química , Inibidores da Fosfodiesterase 5/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Animais , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/enzimologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/farmacocinética , Fosforilação/efeitos dos fármacos , Distribuição Aleatória , Ratos , Escopolamina
7.
ChemistryOpen ; 5(4): 357-68, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27547646

RESUMO

The melting point (MP), an easily accessible physical parameter, has considerable potential for the judgment of drug-like properties. However, to the best of our knowledge, there are no useful guidelines for understanding the relationship between the MP and drug-like properties. To this end, we have constructed the largest MP database (experimental value) of globally approved drugs (3164 organic small-molecule drugs) and discontinued drugs (417 organic small-molecule drugs) and subsequently extracted six subdatabases from the whole approved database and two subdatabases from the discontinued database. The MP distribution statistics and analysis of approved drugs reveal five noteworthy observations; moreover, the MP distribution statistics and analysis of discontinued drugs further supplement these criteria. In addition, the comparison of molecular weight (MW) versus MP and Clog P versus MP distributions of different classes of approved drugs indicated that the MWs and Clog P values of most drugs in the optimal MP range were not more than 500 and 5, respectively, implying the MP distribution criterion was in accordance with Lipinski's rule of five.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...