Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 125: 353-364, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28807671

RESUMO

In the mammalian central nervous system (CNS) GABAA receptors (GABAARs) mediate neuronal inhibition and are important therapeutic targets. GABAARs are composed of 5 subunits, drawn from 19 proteins, underpinning expression of 20-30 GABAAR subtypes. In the CNS these isoforms are heterogeneously expressed and exhibit distinct physiological and pharmacological properties. We report the discovery of S44819, a novel tricyclic oxazolo-2,3-benzodiazepine-derivative, that selectively inhibits α5-subunit-containing GABAARs (α5-GABAARs). Current α5-GABAAR inhibitors bind to the "benzodiazepine site". However, in HEK293 cells expressing recombinant α5-GABAARs, S44819 had no effect on 3H-flumazenil binding, but displaced the GABAAR agonist 3H-muscimol and competitively inhibited the GABA-induced responses. Importantly, we reveal that the α5-subunit selectivity is uniquely governed by amino acid residues within the α-subunit F-loop, a region associated with GABA binding. In mouse hippocampal CA1 neurons, S44819 enhanced long-term potentiation (LTP), blocked a tonic current mediated by extrasynaptic α5-GABAARs, but had no effect on synaptic GABAARs. In mouse thalamic neurons, S44819 had no effect on the tonic current mediated by δ-GABAARs, or on synaptic (α1ß2γ2) GABAARs. In rats, S44819 enhanced object recognition memory and reversed scopolamine-induced impairment of working memory in the eight-arm radial maze. In conclusion, S44819 is a first in class compound that uniquely acts as a potent, competitive, selective antagonist of recombinant and native α5-GABAARs. Consequently, S44819 enhances hippocampal synaptic plasticity and exhibits pro-cognitive efficacy. Given this profile, S44819 may improve cognitive function in neurodegenerative disorders and facilitate post-stroke recovery.


Assuntos
Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Nootrópicos/farmacologia , Oxazóis/farmacologia , Receptores de GABA-A/metabolismo , Animais , Ligação Competitiva , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Flumazenil/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Células HEK293 , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Memória/fisiologia , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Ratos Sprague-Dawley , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/farmacologia
2.
Neuropharmacology ; 125: 30-38, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28694097

RESUMO

Previous work has shown that S44819 is a novel GABAA receptor (GABAAR) antagonist, which is selective for extrasynaptic GABAARs incorporating the α5 subunit (α5-GABAARs). The present study reports on the preclinical neuropsychopharmacological profile of S44819. Significantly, no sedative or pro-convulsive side effects of S44819 were found at doses up to 30 mg/kg i.p. Object recognition (OR) memory in intact mice was enhanced by S44819 (0.3 mg/kg p.o.) given before the acquisition trial. Mice treated with phencyclidine for two weeks and tested six days after the cessation of treatment failed to show OR memory. This deficit was corrected by a single administration of S44819 (0.1, 0.3 or 1 mg/kg p.o.) prior to the acquisition trial. The amnestic effect of ketamine in rats tested in the eight-arm radial maze (reference and working memory versions) was blocked by S44819 (3 mg/kg p.o.). Extinction of cued fear was preserved during treatment with S44819 (3 mg/kg/diem i.p.). Administration of S44819 had no significant effect in the Vogel-conflict test, the elevated plus maze, the forced swim, the marble-burying and the tail-suspension tests. In contrast, anxiolytic/antidepressant-like effects of the compound were found in paradigms that have mnemonic components, such as social interaction, fear-potentiated startle and social avoidance induced by negative life experience. In summary, S44819 enhanced intact recognition memory and ameliorated memory deficits induced by inhibition of NMDA receptors. Anxiolytic/antidepressant efficacy was limited to paradigms involving cognitive function. In conclusion, S44819 is a novel psychoactive pro-cognitive compound with potential as a therapeutic agent in dementia.


Assuntos
Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Nootrópicos/farmacologia , Oxazóis/farmacologia , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Cognição/efeitos dos fármacos , Cognição/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Medo/efeitos dos fármacos , Medo/fisiologia , Ketamina , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos , Fenciclidina , Ratos , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Comportamento Social
3.
Eur J Pharmacol ; 798: 129-136, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28153485

RESUMO

The neurotransmitter γ-amino butyric acid (GABA) has a fundamental role in CNS function and ionotropic (GABAA) receptors that mediate many of the actions of GABA are important therapeutic targets. This study reports the mechanism of action of novel GABAA antagonists based on a tricyclic oxazolo-2,3-benzodiazepine scaffold. These compounds are orthosteric antagonists of GABA on heteropentameric GABAA receptors of αxß2γ2 configuration expressed in HEK293 cells. In silico modelling predicted that the test compounds docked in the GABA binding-pocket and would interact with amino-acid residues in the α- and ß-subunit interface that are known to be important for the binding of GABA. Intriguingly, optimal docking also required an interaction with the non-conserved amino-terminal segment of Loop-F of the α-subunit. Testing of a compound with altered regiochemistry of the oxazolone moiety supported the model with respect to the conserved GABA-interacting residues in vitro as well as in vivo. The prediction regarding loop-F was examined by replacing the amino-terminal variable segment of loop-F of the α5-subunit with the corresponding residues in the α1- and α2-subunits. When tested with the novel inhibitors, the receptors formed by the modified α5-subunits displayed the pharmacologic phenotype of the source of loop-F. In summary, these data show that the variable amino-terminal segment of loop-F of the α-subunit determines the pharmacologic selectivity of the novel tricyclic inhibitors of GABAA receptors.


Assuntos
Benzodiazepinas/química , Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Benzodiazepinas/metabolismo , Ligação Competitiva , Simulação por Computador , Antagonistas de Receptores de GABA-A/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Oxazóis/química , Conformação Proteica , Subunidades Proteicas/química , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/metabolismo
4.
Eur J Pharmacol ; 764: 497-507, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26169564

RESUMO

Novel 2,3-benzodiazepine and related isoquinoline derivatives, substituted at position 1 with a 2-benzothiophenyl moiety, were synthesized to produce compounds that potently inhibited the action of GABA on heterologously expressed GABAA receptors containing the alpha 5 subunit (GABAA α5), with no apparent affinity for the benzodiazepine site. Substitutions of the benzothiophene moiety at position 4 led to compounds with drug-like properties that were putative inhibitors of extra-synaptic GABAA α5 receptors and had substantial blood-brain barrier permeability. Initial characterization in vivo showed that 8-methyl-5-[4-(trifluoromethyl)-1-benzothiophen-2-yl]-1,9-dihydro-2H-[1,3]oxazolo[4,5-h][2,3]benzodiazepin-2-one was devoid of sedative, pro-convulsive or motor side-effects, and enhanced the performance of rats in the object recognition test. In summary, we have discovered a first-in-class GABA-site inhibitor of extra-synaptic GABAA α5 receptors that has promising drug-like properties and warrants further development.


Assuntos
Anticonvulsivantes/farmacologia , Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Nootrópicos/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/metabolismo , Anticonvulsivantes/toxicidade , Comportamento Animal/efeitos dos fármacos , Benzodiazepinas/síntese química , Benzodiazepinas/metabolismo , Benzodiazepinas/toxicidade , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A/síntese química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/toxicidade , Células HEK293 , Humanos , Masculino , Camundongos , Estrutura Molecular , Atividade Motora/efeitos dos fármacos , Nootrópicos/síntese química , Nootrópicos/metabolismo , Nootrópicos/toxicidade , Pentilenotetrazol , Ratos Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Relação Estrutura-Atividade , Xenopus laevis
5.
Neurochem Int ; 52(1-2): 166-83, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17707550

RESUMO

AMPA receptors are fast ligand-gated members of glutamate receptors in neuronal and many types of non-neuronal cells. The heterotetramer complexes are assembled from four subunits (GluR1-4) in region-, development- and function-selective patterns. Each subunit contains three extracellular domains (a large amino terminal domain, an agonist-binding domain and a transducer domain), and three transmembrane segments with a loop (pore forming domain), as well as the intracellular carboxy terminal tail (traffic and conductance regulatory domain). The binding of the agonist (excitatory amino acids and their derivatives) initiates conformational realignments, which transmit to the transducer domain and membrane spanning segments to gate the channel permeable to Na+, K+ and more or less to Ca2+. Several 2,3-benzodiazepines act as non-competitive antagonists of the AMPA receptor (termed also negative allosteric modulators), which are thought to bind to the transducer domains and inhibit channel gating. Analysing their effects in vitro, it has been possible to recognize a structure-activity relationship, and to describe the critical parts of the molecules involved in their action at AMPA receptors. Blockade of AMPA receptors can protect the brain from apoptotic and necrotic cell death by preventing neuronal excitotoxicity during pathophysiological activation of glutamatergic neurons. Animal experiments provided evidence for the potential usefulness of non-competitive AMPA antagonists in the treatment of human ischemic and neurodegenerative disorders including stroke, multiple sclerosis, Parkinson's disease, periventricular leukomalacia and motoneuron disease. 2,3-benzodiazepine AMPA antagonists can protect against seizures, decrease levodopa-induced dyskinesia in animal models of Parkinson's disease demonstrating their utility for the treatment of a variety of CNS disorders.


Assuntos
Benzodiazepinas/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de AMPA/antagonistas & inibidores , Animais , Humanos , Metilação , Receptores de AMPA/genética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...