Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Blood Adv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38759096

RESUMO

Among the most common genetic alterations in the myelodysplastic syndromes (MDS) are mutations in the spliceosome gene SF3B1. Such mutations induce specific RNA missplicing events, directly promote ring sideroblast (RS) formation, and generally associate with more favorable prognosis. However, not all SF3B1 mutations are the same, and little is known about how distinct hotspots influence disease. Here we report that the E592K variant of SF3B1 associates with high-risk disease features in MDS, including a lack of RS, increased myeloblasts, a distinct co-mutation pattern, and a lack of the favorable survival seen with other SF3B1 mutations. Moreover, compared to other hotspot SF3B1 mutations, E592K induces a unique RNA missplicing pattern, retains an interaction with the splicing factor SUGP1, and preserves normal RNA splicing of the sideroblastic anemia genes TMEM14C and ABCB7. These data have implications for our understanding of the functional diversity of spliceosome mutations, as well as the pathobiology, classification, prognosis, and management of SF3B1-mutant MDS.

3.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585725

RESUMO

Nuclear clearance and cytoplasmic aggregation of TDP-43 in neurons, initially identified in ALS-FTD, are hallmark pathological features observed across a spectrum of neurodegenerative diseases. We previously found that TDP-43 loss-of-function leads to the transcriptome-wide inclusion of deleterious cryptic exons in brains and biofluids post-mortem as well as during the presymptomatic stage of ALS-FTD, but upstream mechanisms that lead to TDP-43 dysregulation remain unclear. Here, we developed a web-based resource (SnapMine) to determine the levels of TDP-43 cryptic exon inclusion across hundreds of thousands of publicly available RNA sequencing datasets. We established cryptic exon inclusion across a variety of human cells and tissues to provide ground truth references for future studies on TDP-43 dysregulation. We then explored studies that were entirely unrelated to TDP-43 or neurodegeneration and found that ciclopirox olamine (CPX), an FDA-approved antifungal, can trigger the inclusion of TDP-43-associated cryptic exons in a variety of mouse and human primary cells. CPX induction of cryptic exon occurs via heavy metal toxicity and oxidative stress, suggesting that similar vulnerabilities could play a role in neurodegeneration. Our work demonstrates how diverse datasets can be linked through common biological features and underscores that public archives of sequencing data represent a vastly underutilized resource with tremendous potential for uncovering novel insights into complex biological mechanisms and diseases.

4.
Nat Med ; 30(2): 382-393, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278991

RESUMO

Although loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well documented in postmortem tissues of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects loss of function of TDP-43, and thus detection of proteins containing cryptic exon-encoded neoepitopes in cerebrospinal fluid (CSF) or blood could reveal the earliest stages of TDP-43 dysregulation in patients. Here we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in ALS-FTD, including in presymptomatic C9orf72 mutation carriers. Cryptic hepatoma-derived growth factor-like protein 2 (HDGFL2) accumulates in CSF at significantly higher levels in familial ALS-FTD and sporadic ALS compared with controls and is elevated earlier than neurofilament light and phosphorylated neurofilament heavy chain protein levels in familial disease. Cryptic HDGFL2 can also be detected in blood of individuals with ALS-FTD, including in presymptomatic C9orf72 mutation carriers, and accumulates at levels highly correlated with those in CSF. Our findings indicate that loss of TDP-43 cryptic splicing repression occurs early in disease progression, even presymptomatically, and that detection of the HDGFL2 cryptic neoepitope serves as a potential diagnostic biomarker for ALS, which should facilitate patient recruitment and measurement of target engagement in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Biomarcadores/líquido cefalorraquidiano
5.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37577513

RESUMO

TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt which contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.

6.
Acta Neuropathol ; 147(1): 4, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133681

RESUMO

LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Proteinopatias TDP-43 , Humanos , Feminino , Idoso , Doença de Alzheimer/patologia , Estudos Longitudinais , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/complicações , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
7.
bioRxiv ; 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37215013

RESUMO

Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. Our findings emphasize the need for caution in interpreting TDP-43 overexpression data, and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy. Understanding the subtle aspects of TDP-43 toxicity within different subcellular locations is essential for the development of therapies targeting neurodegenerative disease.

8.
bioRxiv ; 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36789434

RESUMO

Loss of TAR DNA-binding protein 43 kDa (TDP-43) splicing repression is well-documented in postmortem tissues of amyotrophic lateral sclerosis (ALS), yet whether this abnormality occurs during early-stage disease remains unresolved. Cryptic exon inclusion reflects functional loss of TDP-43, and thus detection of cryptic exon-encoded peptides in cerebrospinal fluid (CSF) could reveal the earliest stages of TDP-43 dysregulation in patients. Here, we use a newly characterized monoclonal antibody specific to a TDP-43-dependent cryptic epitope (encoded by the cryptic exon found in HDGFL2) to show that loss of TDP-43 splicing repression occurs in C9ORF72-associated ALS, including pre-symptomatic mutation carriers. In contrast to neurofilament light and heavy chain proteins, cryptic HDGFL2 accumulates in CSF at higher levels during early stages of disease. Our findings indicate that loss of TDP-43 splicing repression occurs early in disease progression, even pre-symptomatically, and that detection of HDGFL2's cryptic neoepitope may serve as a prognostic test for ALS which should facilitate patient recruitment and measurement of target engagement in clinical trials.

9.
Mol Neurodegener ; 17(1): 83, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36536457

RESUMO

BACKGROUND: Amongst risk alleles associated with late-onset Alzheimer's disease (AD), those that converged on the regulation of microglia activity have emerged as central to disease progression. Yet, how canonical amyloid-ß (Aß) and tau pathologies regulate microglia subtypes during the progression of AD remains poorly understood. METHODS: We use single-cell RNA-sequencing to profile microglia subtypes from mice exhibiting both Aß and tau pathologies across disease progression. We identify novel microglia subtypes that are induced in response to both Aß and tau pathologies in a disease-stage-specific manner. To validate the observation in AD mouse models, we also generated a snRNA-Seq dataset from the human superior frontal gyrus (SFG) and entorhinal cortex (ERC) at different Braak stages. RESULTS: We show that during early-stage disease, interferon signaling induces a subtype of microglia termed Early-stage AD-Associated Microglia (EADAM) in response to both Aß and tau pathologies. During late-stage disease, a second microglia subtype termed Late-stage AD-Associated Microglia (LADAM) is detected. While similar microglia subtypes are observed in other models of neurodegenerative disease, the magnitude and composition of gene signatures found in EADAM and LADAM are distinct, suggesting the necessity of both Aß and tau pathologies to elicit their emergence. Importantly, the pattern of EADAM- and LADAM-associated gene expression is observed in microglia from AD brains, during the early (Braak II)- or late (Braak VI/V)- stage of the disease, respectively. Furthermore, we show that several Siglec genes are selectively expressed in either EADAM or LADAM. Siglecg is expressed in white-matter-associated LADAM, and expression of Siglec-10, the human orthologue of Siglecg, is progressively elevated in an AD-stage-dependent manner but not shown in non-AD tauopathy. CONCLUSIONS: Using scRNA-Seq in mouse models bearing amyloid-ß and/or tau pathologies, we identify novel microglia subtypes induced by the combination of Aß and tau pathologies in a disease stage-specific manner. Our findings suggest that both Aß and tau pathologies are required for the disease stage-specific induction of EADAM and LADAM. In addition, we revealed Siglecs as biomarkers of AD progression and potential therapeutic targets.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Camundongos , Humanos , Animais , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Proteínas tau/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Progressão da Doença , Modelos Animais de Doenças
10.
Nat Commun ; 13(1): 5773, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182931

RESUMO

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Assuntos
Cálcio , Splicing de RNA , Processamento Alternativo/genética , Sequência de Bases , Éxons/genética , Regulação da Expressão Gênica , Íntrons/genética
11.
Elife ; 112022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311646

RESUMO

Generation of oligodendrocytes in the adult brain enables both adaptive changes in neural circuits and regeneration of myelin sheaths destroyed by injury, disease, and normal aging. This transformation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes requires processing of distinct mRNAs at different stages of cell maturation. Although mislocalization and aggregation of the RNA-binding protein, TDP-43, occur in both neurons and glia in neurodegenerative diseases, the consequences of TDP-43 loss within different stages of the oligodendrocyte lineage are not well understood. By performing stage-specific genetic inactivation of Tardbp in vivo, we show that oligodendrocyte lineage cells are differentially sensitive to loss of TDP-43. While OPCs depend on TDP-43 for survival, with conditional deletion resulting in cascading cell loss followed by rapid regeneration to restore their density, oligodendrocytes become less sensitive to TDP-43 depletion as they mature. Deletion of TDP-43 early in the maturation process led to eventual oligodendrocyte degeneration, seizures, and premature lethality, while oligodendrocytes that experienced late deletion survived and mice exhibited a normal lifespan. At both stages, TDP-43-deficient oligodendrocytes formed fewer and thinner myelin sheaths and extended new processes that inappropriately wrapped neuronal somata and blood vessels. Transcriptional analysis revealed that in the absence of TDP-43, key proteins involved in oligodendrocyte maturation and myelination were misspliced, leading to aberrant incorporation of cryptic exons. Inducible deletion of TDP-43 from oligodendrocytes in the adult central nervous system (CNS) induced the same progressive morphological changes and mice acquired profound hindlimb weakness, suggesting that loss of TDP-43 function in oligodendrocytes may contribute to neuronal dysfunction in neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos , Bainha de Mielina/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurogênese , Oligodendroglia/metabolismo
12.
Sci Transl Med ; 14(628): eabi9196, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044790

RESUMO

Sporadic inclusion body myositis (IBM) is the most common acquired muscle disease in adults over age 50, yet it remains unclear whether the disease is primarily driven by T cell­mediated autoimmunity. IBM muscle biopsies display nuclear clearance and cytoplasmic aggregation of TDP-43 in muscle cells, a pathologic finding observed initially in neurodegenerative diseases, where nuclear loss of TDP-43 in neurons causes aberrant RNA splicing. Here, we show that loss of TDP-43­mediated splicing repression, as determined by inclusion of cryptic exons, occurs in skeletal muscle of subjects with IBM. Of 119 muscle biopsies tested, RT-PCR­mediated detection of cryptic exon inclusion was able to diagnose IBM with 84% sensitivity and 99% specificity. To determine the role of T cells in pathogenesis, we generated a xenograft model by transplanting human IBM muscle into the hindlimb of immunodeficient mice. Xenografts from subjects with IBM displayed robust regeneration of human myofibers and recapitulated both inflammatory and degenerative features of the disease. Myofibers in IBM xenografts showed invasion by human, oligoclonal CD8+ T cells and exhibited MHC-I up-regulation, rimmed vacuoles, mitochondrial pathology, p62-positive inclusions, and nuclear clearance and cytoplasmic aggregation of TDP-43, associated with cryptic exon inclusion. Reduction of human T cells within IBM xenografts by treating mice intraperitoneally with anti-CD3 (OKT3) suppressed MHC-I up-regulation. However, rimmed vacuoles and loss of TDP-43 function persisted. These data suggest that T cell depletion does not alter muscle degenerative pathology in IBM.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Miosite de Corpos de Inclusão , Miosite , Animais , Linfócitos T CD8-Positivos , Proteínas de Ligação a DNA/genética , Xenoenxertos , Humanos , Camundongos , Músculo Esquelético/patologia , Miosite/diagnóstico , Miosite/patologia , Miosite de Corpos de Inclusão/diagnóstico , Miosite de Corpos de Inclusão/patologia , Vacúolos/patologia
13.
Genome Biol ; 22(1): 323, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34844637

RESUMO

We present recount3, a resource consisting of over 750,000 publicly available human and mouse RNA sequencing (RNA-seq) samples uniformly processed by our new Monorail analysis pipeline. To facilitate access to the data, we provide the recount3 and snapcount R/Bioconductor packages as well as complementary web resources. Using these tools, data can be downloaded as study-level summaries or queried for specific exon-exon junctions, genes, samples, or other features. Monorail can be used to process local and/or private data, allowing results to be directly compared to any study in recount3. Taken together, our tools help biologists maximize the utility of publicly available RNA-seq data, especially to improve their understanding of newly collected data. recount3 is available from http://rna.recount.bio .


Assuntos
Splicing de RNA , RNA-Seq/métodos , RNA/genética , Animais , Sequência de Bases , Biologia Computacional/métodos , Éxons , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Análise de Sequência de RNA/métodos , Software
14.
Nat Commun ; 11(1): 137, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919425

RESUMO

Public archives of next-generation sequencing data are growing exponentially, but the difficulty of marshaling this data has led to its underutilization by scientists. Here, we present ASCOT, a resource that uses annotation-free methods to rapidly analyze and visualize splice variants across tens of thousands of bulk and single-cell data sets in the public archive. To demonstrate the utility of ASCOT, we identify novel cell type-specific alternative exons across the nervous system and leverage ENCODE and GTEx data sets to study the unique splicing of photoreceptors. We find that PTBP1 knockdown and MSI1 and PCBP2 overexpression are sufficient to activate many photoreceptor-specific exons in HepG2 liver cancer cells. This work demonstrates how large-scale analysis of public RNA-Seq data sets can yield key insights into cell type-specific control of RNA splicing and underscores the importance of considering both annotated and unannotated splicing events.


Assuntos
Processamento Alternativo/genética , Biologia Computacional/métodos , Análise de Dados , Células Fotorreceptoras/citologia , Sítios de Splice de RNA/genética , Animais , Linhagem Celular Tumoral , Expressão Gênica/genética , Células Hep G2 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Hepáticas/genética , Camundongos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteínas de Ligação a RNA/biossíntese , Proteínas de Ligação a RNA/genética , Retina/citologia , Análise de Sequência de RNA/métodos
15.
Acta Neuropathol ; 138(5): 813-826, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31332509

RESUMO

Nuclear depletion of TDP-43, an essential RNA binding protein, may underlie neurodegeneration in amyotrophic lateral sclerosis (ALS). As several functions have been ascribed to this protein, the critical role(s) of TDP-43 in motor neurons that may be compromised in ALS remains unknown. We show here that TDP-43 mediated splicing repression, which serves to protect the transcriptome by preventing aberrant splicing, is central to the physiology of motor neurons. Expression in Drosophila TDP-43 knockout models of a chimeric repressor, comprised of the RNA recognition domain of TDP-43 fused to an unrelated splicing repressor, RAVER1, attenuated motor deficits and extended lifespan. Likewise, AAV9-mediated delivery of this chimeric rescue repressor to mice lacking TDP-43 in motor neurons delayed the onset, slowed the progression of motor symptoms, and markedly extended their lifespan. In treated mice lacking TDP-43 in motor neurons, aberrant splicing was significantly decreased and accompanied by amelioration of axon degeneration and motor neuron loss. This AAV9 strategy allowed long-term expression of the chimeric repressor without any adverse effects. Our findings establish that splicing repression is a major function of TDP-43 in motor neurons and strongly support the idea that loss of TDP-43-mediated splicing fidelity represents a key pathogenic mechanism underlying motor neuron loss in ALS.


Assuntos
Proteínas de Ligação a DNA/genética , Neurônios Motores/patologia , Degeneração Neural/genética , Splicing de RNA/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila , Humanos , Neurônios Motores/metabolismo , Degeneração Neural/patologia , Proteínas de Ligação a RNA/metabolismo
16.
RNA ; 24(6): 761-768, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29581412

RESUMO

The fidelity of RNA splicing is regulated by a network of splicing enhancers and repressors, although the rules that govern this process are not yet fully understood. One mechanism that contributes to splicing fidelity is the repression of nonconserved cryptic exons by splicing factors that recognize dinucleotide repeats. We previously identified that TDP-43 and PTBP1/PTBP2 are capable of repressing cryptic exons utilizing UG and CU repeats, respectively. Here we demonstrate that hnRNP L (HNRNPL) also represses cryptic exons by utilizing exonic CA repeats, particularly near the 5'SS. We hypothesize that hnRNP L regulates CA repeat repression for both cryptic exon repression and developmental processes such as T cell differentiation.


Assuntos
Éxons , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Precursores de RNA/genética , Splicing de RNA , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Genoma , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Jurkat , Camundongos , Proteínas Repressoras/genética
17.
Acta Neuropathol ; 133(6): 923-931, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28332094

RESUMO

Abnormal accumulation of TDP-43 into cytoplasmic or nuclear inclusions with accompanying nuclear clearance, a common pathology initially identified in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), has also been found in Alzheimer' disease (AD). TDP-43 serves as a splicing repressor of nonconserved cryptic exons and that such function is compromised in brains of ALS and FTD patients, suggesting that nuclear clearance of TDP-43 underlies its inability to repress cryptic exons. However, whether TDP-43 cytoplasmic aggregates are a prerequisite for the incorporation of cryptic exons is not known. Here, we assessed hippocampal tissues from 34 human postmortem brains including cases with confirmed diagnosis of AD neuropathologic changes along with age-matched controls. We found that cryptic exon incorporation occurred in all AD cases exhibiting TDP-43 pathology. Furthermore, incorporation of cryptic exons was observed in the hippocampus when TDP-43 inclusions was restricted only to the amygdala, the earliest stage of TDP-43 progression. Importantly, cryptic exon incorporation could be detected in AD brains lacking TDP-43 inclusion but exhibiting nuclear clearance of TDP-43. These data supports the notion that the functional consequence of nuclear depletion of TDP-43 as determined by cryptic exon incorporation likely occurs as an early event of TDP-43 proteinopathy and may have greater contribution to the pathogenesis of AD than currently appreciated. Early detection and effective repression of cryptic exons in AD patients may offer important diagnostic and therapeutic implications for this devastating illness of the elderly.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Estudos de Coortes , Éxons , Feminino , Humanos , Imuno-Histoquímica , Masculino , Neurônios/metabolismo , Neurônios/patologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia
18.
Mol Neurodegener ; 12(1): 13, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153034

RESUMO

BACKGROUND: TDP-43 proteinopathy is a prominent pathological feature that occurs in a number of human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and inclusion body myositis (IBM). Our recent finding that TDP-43 represses nonconserved cryptic exons led us to ask whether cell type-specific cryptic exons could exist to impact unique molecular pathways in brain or muscle. METHODS: In the present work, we investigated TDP-43's function in various mouse tissues to model disease pathogenesis. We generated mice to conditionally delete TDP-43 in excitatory neurons or skeletal myocytes and identified the cell type-specific cryptic exons associated with TDP-43 loss of function. RESULTS: Comparative analysis of nonconserved cryptic exons in various mouse cell types revealed that only some cryptic exons were common amongst stem cells, neurons, and myocytes; the majority of these nonconserved cryptic exons were cell type-specific. CONCLUSIONS: Our results suggest that in human disease, TDP-43 loss of function may impair cell type-specific pathways.


Assuntos
Proteínas de Ligação a DNA/genética , Éxons/genética , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Neurônios/metabolismo , Animais , Modelos Animais de Doenças , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteinopatias TDP-43/genética
19.
Curr Biol ; 27(1): 128-136, 2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-28017605

RESUMO

The suprachiasmatic nucleus (SCN) is the central circadian clock in mammals. It is entrained by light but resistant to temperature shifts that entrain peripheral clocks [1-5]. The SCN expresses many functionally important neuropeptides, including vasoactive intestinal peptide (VIP), which drives light entrainment, synchrony, and amplitude of SCN cellular clocks and organizes circadian behavior [5-16]. The transcription factor LHX1 drives SCN Vip expression, and cellular desynchrony in Lhx1-deficient SCN largely results from Vip loss [17, 18]. LHX1 regulates many genes other than Vip, yet activity rhythms in Lhx1-deficient mice are similar to Vip-/- mice under light-dark cycles and only somewhat worse in constant conditions. We suspected that LHX1 targets other than Vip have circadian functions overlooked in previous studies. In this study, we compared circadian sleep and temperature rhythms of Lhx1- and Vip-deficient mice and found loss of acute light control of sleep in Lhx1 but not Vip mutants. We also found loss of circadian resistance to fever in Lhx1 but not Vip mice, which was partially recapitulated by heat application to cultured Lhx1-deficient SCN. Having identified VIP-independent functions of LHX1, we mapped the VIP-independent transcriptional network downstream of LHX1 and a largely separable VIP-dependent transcriptional network. The VIP-independent network does not affect core clock amplitude and synchrony, unlike the VIP-dependent network. These studies identify Lhx1 as the first gene required for temperature resistance of the SCN clockworks and demonstrate that acute light control of sleep is routed through the SCN and its immediate output regions.


Assuntos
Relógios Circadianos , Redes Reguladoras de Genes , Proteínas com Homeodomínio LIM/fisiologia , Sono , Fatores de Transcrição/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Vigília , Animais , Ritmo Circadiano , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fotoperíodo , Transdução de Sinais , Núcleo Supraquiasmático/citologia , Núcleo Supraquiasmático/metabolismo
20.
Acta Neuropathol ; 132(6): 859-873, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27785573

RESUMO

TDP-43 proteinopathy, initially associated with ALS and FTD, is also found in 30-60% of Alzheimer's disease (AD) cases and correlates with worsened cognition and neurodegeneration. A major component of this proteinopathy is depletion of this RNA-binding protein from the nucleus, which compromises repression of non-conserved cryptic exons in neurodegenerative diseases. To test whether nuclear depletion of TDP-43 may contribute to the pathogenesis of AD cases with TDP-43 proteinopathy, we examined the impact of depletion of TDP-43 in populations of neurons vulnerable in AD, and on neurodegeneration in an AD-linked context. Here, we show that some populations of pyramidal neurons that are selectively vulnerable in AD are also vulnerable to TDP-43 depletion in mice, while other forebrain neurons appear spared. Moreover, TDP-43 depletion in forebrain neurons of an AD mouse model exacerbates neurodegeneration, and correlates with increased prefibrillar oligomeric Aß and decreased Aß plaque burden. These findings support a role for nuclear depletion of TDP-43 in the pathogenesis of AD and provide strong rationale for developing novel therapeutics to alleviate the depletion of TDP-43 and functional antemortem biomarkers associated with its nuclear loss.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Proteínas de Ligação a DNA/deficiência , Doenças Neurodegenerativas/etiologia , Placa Amiloide , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antineoplásicos Hormonais/uso terapêutico , Autofagia/genética , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Placa Amiloide/etiologia , Placa Amiloide/genética , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Prosencéfalo/patologia , Tamoxifeno/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...