Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Adv Mater ; : e2402695, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742820

RESUMO

Flexible supercapacitors are potential to power next-generation flexible electronics. However, the mechanical and electrochemical stability of flexible supercapacitors under different flexible conditions is limited by the weak bonding between adjacent layers, posing a significant hindrance to their practical applicability. Herein, based on the uninterrupted 3D network during the growth of bacterial cellulose (BC), w e have cultivated a flexible all-in-one supercapacitor through a continuous biosynthesis process. This strategy ensures the continuity of the 3D network of BC throughout the material, thereby forming a continuous electrode-separator-electrode structure. Benefitting from this bioinspired structure, the all-in-one supercapacitor not only achieves a high areal capacitance (3.79 F cm-2) of electrodes but also demonstrates the integration of high tensile strength (2.15 MPa), high shear strength (more than 54.6 kPa), and high bending resistance, indicating a novel pathway towards high-performance flexible power sources. This article is protected by copyright. All rights reserved.

2.
Adv Mater ; 35(24): e2300241, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36971025

RESUMO

The exploration of extreme environments has become necessary for understanding and changing nature. However, the development of functional materials suitable for extreme conditions is still insufficient. Herein, a kind of nacre-inspired bacterial cellulose (BC)/synthetic mica (S-Mica) nanopaper with excellent mechanical and electrical insulating properties that has excellent tolerance to extreme conditions is reported. Benefited from the nacre-inspired structure and the 3D network of BC, the nanopaper exhibits excellent mechanical properties, including high tensile strength (375 MPa), outstanding foldability, and bending fatigue resistance. In addition, S-Mica arranged in layers endows the nanopaper with remarkable dielectric strength (145.7 kV mm-1 ) and ultralong corona resistance life. Moreover, the nanopaper is highly resistant to alternating high and low temperatures, UV light, and atomic oxygen, making it an ideal candidate for extreme environment-resistant materials.

3.
Angew Chem Int Ed Engl ; 62(6): e202211099, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36416072

RESUMO

The oriented pore structure of wood endows it with a variety of outstanding properties, among which the low thermal conductivity has attracted researchers to develop wood-like aerogels as excellent thermal insulation materials. However, the increasing demands of environmental protection have put forward new and strict requirements for the sustainability of aerogels. Here, we report an all-natural wood-inspired aerogel consisting of all-natural ingredients and develop a method to activate the surface-inert wood particles to construct the aerogel. The obtained wood-inspired aerogel has channel structure similar to that of natural wood, endowing it with superior thermal insulation properties to most existing commercial sponges. In addition, remarkable fire retardancy and complete biodegradability are integrated. With the above outstanding performances, this sustainable wood-inspired aerogel will be an ideal substitute for the existing commercial thermal insulation materials.

4.
Chinese Journal of School Health ; (12): 898-900, 2022.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-934834

RESUMO

Objective@#To explore the prevention and control effects of different management modes on children with high risk of dental caries from some kindergartens in Zhangjiagang, and to provide a basis for relevant departments to formulate oral health management strategy.@*Methods@#In September 2020, 1 600 children aged 3 years old from 9 towns in Zhangjiagang were sampled by cluster sampling method for baseline survey, including oral examination, questionnaire survey and caries susceptibility test. According to the risk assessment criteria, high risk children were screened out and divided into two groups. In the experimental group, the frequency of fluoride application was once every 3 months, combined with behavioral management and oral health guidance. In the control group, fluoride application was conducted once every 6 months, combined with behavioral management and oral health guidance. The effect of caries prevention was evaluated one year later.@*Results@#The prevalence of caries in three year old children was 50.9% at baseline, and the prevalence of caries in boys and girls was 47.5% and 54.5%, respectively, with statistical significance ( χ 2=9.64, P <0.05). A total of 1 090 high risk children were screened out, including 475 in experimental group and 615 in control group. The prevalence of caries in the two groups at baseline was 74.1% and 75.1%, respectively, and dmft were (2.98±3.33) and (3.04±3.16), respectively, with no significant difference ( χ 2/t =0.15, 0.28, P >0.05). One year after intervention, the prevalence of caries in the two groups was 78.5% and 83.0%, respectively and dmft were (4.22±3.97) and (4.51±4.08), respectively, with no statistical significance ( χ 2/t=3.17, 0.05, P >0.05). The incidence of new caries in the experimental group was 3.7%, and the incidence of new caries was (1.26±1.69), lower than 7.6% and (1.45±2.04) in the control group, with statistical significance ( χ 2/t=6.89, 5.05, P <0.05).@*Conclusion@#The frequency of fluorination intervention once every 3 months combined with behavior management mode was more effective in controlling new caries in children with high risk of caries.

5.
Natl Sci Rev ; 8(7): nwaa230, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691687

RESUMO

Construction of sustainable high-performance structural materials is a core part of the key global sustainability goal. Many efforts have been made in this field; however, challenges remain in terms of lowering costs by using all-green basic building blocks and improving mechanical properties to meet the demand of practical applications. Here, we report a robust and efficient bottom-up strategy with micro/nanoscale structure design to regenerate an isotropic wood from natural wood particles as a high-performance sustainable structural material. Regenerated isotropic wood (RGI-wood) exceeds the limitations of the anisotropic and inconsistent mechanical properties of natural wood, having isotropic flexural strength of ∼170 MPa and flexural modulus of ∼10 GPa. RGI-wood also shows superior water resistance and fire retardancy properties to natural pine wood. Mass production of large sized RGI-wood and functional RGI-wood nanocomposites can also be achieved.

6.
Nano Lett ; 21(21): 8999-9004, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665629

RESUMO

Ubiquitous petrochemical-based plastics pose a potential threat to ecosystems. In response, bioderived and degradable polymeric materials are being developed, but their mechanical and thermal properties cannot compete with those of existing petrochemical-based plastics, especially those used as structural materials. Herein, we report a biodegradable plant cellulose nanofiber (CNF)-derived polymeric structural material with high-density reversible interaction networks between nanofibers, exhibiting mechanical and thermal properties better than those of existing petrochemical-based plastics. This all-green material has substantially improved flexural strength (∼300 MPa) and modulus (∼16 GPa) compared with those of existing petrochemical-based plastics. Its average thermal expansion coefficient is only 7 × 10-6 K-1, which is more than 10 times lower than those of petrochemical-based plastics, indicating its dimension is almost unchanged when heated, and thus, it has a thermal dimensional stability that is better than those of plastics. As a fully bioderived and degradable material, the all-green material offers a more sustainable high-performance alternative to petrochemical-based plastics.


Assuntos
Celulose , Nanofibras , Celulose/química , Ecossistema , Nanofibras/química , Plásticos , Polímeros
7.
ACS Nano ; 15(5): 7889-7898, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33979147

RESUMO

Hydrogel materials have many excellent properties and a wide range of applications. Recently, a new type of hydrogel has emerged: cellulose nanofiber (CNF)-based hydrogels, which have three-dimensional nanofiber networks and unique physical properties. Because CNFs are abundant, renewable, and biodegradable, they are green and eco-friendly nanoscale building blocks. In addition, CNF-based hydrogel materials exhibit excellent mechanical properties and designable functions by different preparation methods and structure designs, demonstrating huge development potential. In this Perspective, we summarize the recent progress in the development of CNF-based hydrogels and introduce their applications in elastic hydrogels, ionic conduction, water purification, and biomedicine, highlighting future trends and opportunities for the further development of CNF-based hydrogels as emerging materials systems.

8.
Nano Lett ; 21(6): 2532-2537, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33683886

RESUMO

Electromagnetic interference (EMI) shielding materials with excellent EMI shielding efficiency (SE), lightweight property, and superb mechanical performance are vitally important for modern society, but it is still a challenge to realize these performances simultaneously on one material. Here, we report a sustainable bioinspired double-network structural material with excellent specific strength (146 MPa g-1 cm3) and remarkable EMI SE (100 dB) from cellulose nanofiber (CNF) and carbon nanotubes (CNTs), which demonstrates remarkable and outstanding performance to both typical metal materials and reported polymer composites. In particular, the bioinspired double-network structure design simultaneously achieves an extremely high electrical conductivity and mechanical strength, which makes it a lightweight, high shielding efficiency, and sustainable structural material for real-life electromagnetic wave shielding applications.

9.
Nano Lett ; 21(2): 952-958, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33401909

RESUMO

Hydrogel materials with high water content and good biocompatibility are drawing more and more attention now, especially for biomedical use. However, it still remains a challenge to construct hydrogel fibers with enough strength and toughness for practical applications. Herein, we report a bio-inspired lotus-fiber-mimetic spiral structure hydrogel bacterial cellulose fiber with high strength, high toughness, high stretchability, and energy dissipation, named biomimetic hydrogel fiber (BHF). The spiral-like structure endows BHF with excellent stretchability through plastic deformation and local failure, assisted by the breaking-reforming nature of the hydrogen bonding network among cellulose nanofibers. With the high strength, high stretchability, high energy dissipation, high hydrophilicity, porous structure, and excellent biocompatibility, BHF is a promising hydrogel fiber for biomedicine. The outstanding stretchability and energy dissipation of BHF allow it to absorb energy from the tissue deformation around a wound and effectively protect the wound from rupture, which makes BHF an ideal surgical suture.


Assuntos
Lotus , Nanofibras , Celulose , Hidrogéis , Porosidade
10.
ACS Nano ; 15(1): 1310-1320, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372752

RESUMO

Undoubtedly humidity is a non-negligible and sensitive problem for cellulose, which is usually regarded as one disadvantage to cellulose-based materials because of the uncontrolled deformation and mechanical decline. But the lack of an in-depth understanding of the interfacial behavior of nanocellulose in particular makes it challenging to maintain anticipated performance for cellulose-based materials under varied relative humidity (RH). Starting from multiscale mechanics, we herein carry out first-principles calculations and large-scale molecular dynamics simulations to demonstrate the humidity-mediated interface in hierarchical cellulose nanocrystals (CNCs) and associated deformation modes. More intriguingly, the simulations and subsequent experiments reveal that water molecules (moisture) as the interfacial media can strengthen and toughen nanocellulose simultaneously within a suitable range of RH. From the perspective of interfacial design in materials, the anomalous mechanical behavior of nanocellulose with humidity-mediated interfaces indicates that flexible hydrogen bonds (HBs) play a pivotal role in the interfacial sliding. The difference between CNC-CNC HBs and CNC-water-CNC HBs triggers the humidity-mediated interfacial slipping in nanocellulose, resulting in the arising of a pronounced strain hardening stage and the suppression of strain localization during uniaxial tension. This inelastic deformation of nanocellulose with humidity-mediated interfaces is similar to the Velcro-like behavior of a wet wood cell wall. Our investigations give evidence that the humidity-mediated interface can promote the mechanical enhancement of nanocellulose, which would provide a promising strategy for the bottom-up design of cellulose-based materials with tailored mechanical properties.

11.
Nat Commun ; 11(1): 5401, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144561

RESUMO

Petroleum-based plastics are useful but they pose a great threat to the environment and human health. It is highly desirable yet challenging to develop sustainable structural materials with excellent mechanical and thermal properties for plastic replacement. Here, inspired by nacre's multiscale architecture, we report a simple and efficient so called "directional deforming assembly" method to manufacture high-performance structural materials with a unique combination of high strength (281 MPa), high toughness (11.5 MPa m1/2), high stiffness (20 GPa), low coefficient of thermal expansion (7 × 10-6 K-1) and good thermal stability. Based on all-natural raw materials (cellulose nanofiber and mica microplatelet), the bioinspired structural material possesses better mechanical and thermal properties than petroleum-based plastics, making it a high-performance and eco-friendly alternative structural material to substitute plastics.

12.
Nano Lett ; 20(8): 5699-5704, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32638594

RESUMO

Water purification by solar distillation is considered a promising technology for producing clean water from undrinkable water resources. A solar steam generator is a central part of a solar distillation process to separate water and contaminants. Here, we report an efficient and sustainable hierarchical solar steam generator (HSSG) with reduced vaporization enthalpy based on bacterial cellulose (BC) nanocomposites. The nanomaterials are assembled with BC nanofibers produced by bacteria in situ to form nanocomposites. Using this method, we construct functional BC nanocomposites inside and on the natural porous structure of wood. Our HSSG integrates solar-to-vapor efficiency improvement and vaporization enthalpy reduction by integrating the hierarchical multifunctional BC nanocomposites with the natural porous structure of wood. Because of the biomimetic design, hierarchical structure and reduced vaporization enthalpy of HSSG, a high evaporation rate of 2.9 kg m-2 h-1 and solar-to-vapor efficiency of 80% is achieved.


Assuntos
Vapor , Água , Biomimética , Volatilização , Madeira
13.
Sci Adv ; 6(18): eaaz1114, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494670

RESUMO

Sustainable structural materials with light weight, great thermal dimensional stability, and superb mechanical properties are vitally important for engineering application, but the intrinsic conflict among some material properties (e.g., strength and toughness) makes it challenging to realize these performance indexes at the same time under wide service conditions. Here, we report a robust and feasible strategy to process cellulose nanofiber (CNF) into a high-performance sustainable bulk structural material with low density, excellent strength and toughness, and great thermal dimensional stability. The obtained cellulose nanofiber plate (CNFP) has high specific strength [~198 MPa/(Mg m-3)], high specific impact toughness [~67 kJ m-2/(Mg m-3)], and low thermal expansion coefficient (<5 × 10-6 K-1), which shows distinct and superior properties to typical polymers, metals, and ceramics, making it a low-cost, high-performance, and environmental-friendly alternative for engineering requirement, especially for aerospace applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...