Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 21(1): 152, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761884

RESUMO

BACKGROUND: Prunus pedunculata Pall, the deciduous shrub of Amygdalus subgenus in Rosaceae, is a new kind of desert oil-bearing tree. It has a long story of being planted in the West and North of China for sand fixation and desert control. In addition, the seeds of P. pedunculata are rich of oil, especially the monounsaturated fatty acid and polyunsaturated fatty acid. However, little is known about the molecular mechanisms of oil accumulation during the seed development of P. pedunculata. RESULTS: The seeds of P. pedunculata from three independent plants at 10, 18, 24, 31, 39, 45, 59 and 73 days after flowering (DAF) were obtained and the oil compositions were evaluated. It showed that oleic acid was the dominant type of oil content in the mature seeds (from 32.724% at 10DAF to 72.06% at 73DAF). Next, transcriptome sequencing for the developing seeds produced 988.795 million high quality reads and TRINITY assembled 326,271 genes for the first transcriptome for P. pedunculata. After the assembled transcriptome was evaluated by BUSCO with 85.9% completeness, we identified 195,342, 109,850 and 121,897 P. pedunculata genes aligned to NR, GO and KEGG pathway databases, respectively. Then, we predicted 23,229 likely proteins from the assembled transcriptome and identified 1917 signal peptides and 5512 transmembrane related proteins. In the developing seeds we detected 91,362 genes (average FPKM > 5) and correlation analysis indicated three possible development stages - early (10 ~ 24DAF), middle (31 ~ 45DAF) and late (59 ~ 73DAF). We next analyzed the differentially expressed genes (DEGs) in the developing seeds. Interestingly, compared to 10DAF the number of DEGs was increased from 4406 in 18DAF to 27,623 in 73DAF. Based on the gene annotation, we identified 753, 33, 8 and 645 DEGs related to the fatty acid biosynthesis, lipid biosynthesis, oil body and transcription factors. Notably, GPAT, DGD1, LACS2, UBC and RINO were highly expressed at the early development stage, ω6-FAD, SAD, ACP, ACCA and AHG1 were highly expressed at the middle development stage, and LACS6, DGD1, ACAT1, AGPAT, WSD1, EGY2 and oleosin genes were highly expressed at the late development stage. CONCLUSIONS: This is the first time to study the developing seed transcriptome of P. pedunculata and our findings will provide a valuable resource for future studies. More importantly, it will improve our understanding of molecular mechanisms of oil accumulation in P. pedunculata.


Assuntos
Ácidos Graxos/biossíntese , Genes de Plantas , Prunus/genética , Sementes/genética , Ácidos Graxos/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Metabolismo dos Lipídeos , Anotação de Sequência Molecular , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Prunus/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Fatores de Transcrição/metabolismo
2.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560491

RESUMO

The foreground segmentation method is a crucial first step for many video analysis methods such as action recognition and object tracking. In the past five years, convolutional neural network based foreground segmentation methods have made a great breakthrough. However, most of them pay more attention to stationary cameras and have constrained performance on the pan-tilt-zoom (PTZ) cameras. In this paper, an end-to-end deep features homography transformation and fusion network based foreground segmentation method (HTFnetSeg) is proposed for surveillance videos recorded by PTZ cameras. In the kernel of HTFnetSeg, there is the combination of an unsupervised semantic attention homography estimation network (SAHnet) for frames alignment and a spatial transformed deep features fusion network (STDFFnet) for segmentation. The semantic attention mask in SAHnet reinforces the network to focus on background alignment by reducing the noise that comes from the foreground. STDFFnet is designed to reuse the deep features extracted during the semantic attention mask generation step by aligning the features rather than only the frames, with a spatial transformation technique in order to reduce the algorithm complexity. Additionally, a conservative strategy is proposed for the motion map based post-processing step to further reduce the false positives that are brought by semantic noise. The experiments on both CDnet2014 and Lasiesta show that our method outperforms many state-of-the-art methods, quantitively and qualitatively.

3.
Sci Data ; 7(1): 139, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385314

RESUMO

Hulless barley (Hordeum vulgare L. var. nudum) is a barley variety that has loose husk cover of the caryopses. Because of the ease in processing and edibility, hulless barley has been locally cultivated and used as human food. For example, in Tibetan Plateau, hulless barley is the staple food for human and essential livestock feed. Although the draft genome of hulless barley has been sequenced, the assembly remains fragmented. Here, we reported an improved high-quality assembly and annotation of the Tibetan hulless barley genome using more than 67X PacBio long-reads. The N50 contig length of the new assembly is at least more than 19 times larger than other available barley assemblies. The new genome assembly also showed high gene completeness and high collinearity of genome synteny with the previously reported barley genome. The new genome assembly and annotation will not only remove major hurdles in genetic analysis and breeding of hulless barley, but will also serve as a key resource for studying barley genomics and genetics.


Assuntos
Genoma de Planta , Hordeum/genética , Anotação de Sequência Molecular , Tibet
4.
Front Plant Sci ; 10: 707, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244865

RESUMO

Alternative pre-mRNA splicing (AS) is prevalent in plants and is involved in many interactions between plants and environmental stresses. However, the patterns and underlying mechanisms of AS evolution in plants remain unclear. By analyzing the transcriptomes of four eudicot species, we revealed that the divergence of AS is largely due to the gains and losses of AS events among orthologous genes. Furthermore, based on a subset of AS, in which AS can be directly associated with specific transcripts, we found that AS that generates transcripts containing premature termination codons (PTC), are likely more conserved than those that generate non-PTC containing transcripts. This suggests that AS coupled with nonsense-mediated decay (NMD) might play an important role in affecting mRNA levels post-transcriptionally. To understand the mechanisms underlying the divergence of AS, we analyzed the key determinants of AS using a machine learning approach. We found that the presence/absence of alternative splice site (SS) within the junction, the distance between the authentic SS and the nearest alternative SS, the size of exon-exon junctions were the major determinants for both alternative 5' donor site and 3' acceptor site among the studied species, suggesting a relatively conserved AS mechanism. The comparative analysis further demonstrated that variations of the identified AS determinants significantly contributed to the AS divergence among closely related species in both Solanaceae and Brassicaceae taxa. Together, these results provide detailed insights into the evolution of AS in plants.

5.
J Integr Plant Biol ; 59(12): 844-850, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843024

RESUMO

When herbivores attack, plants specifically reconfigure their metabolism. Herbivory on the wild tobacco Nicotiana attenuata strongly induces the R2R3 MYB transcriptional activator MYB8, which was reported to specifically regulate the accumulation of phenolamides (PAs). We discovered that transcriptional regulation of trypsin protease inhibitors (TPIs) and a threonine deaminase (TD) also depend on MYB8 expression. Induced distributions of PAs, TD and TPIs all meet predictions of optimal defense theory: their leaf concentrations increase with the fitness value and the probability of attack of the tissue. Therefore, we suggest that these defensive compounds have evolved to be co-regulated by MYB8.


Assuntos
Nicotiana/parasitologia , Plantas Geneticamente Modificadas/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Proteínas de Plantas/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(23): 6133-6138, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28536194

RESUMO

Nicotine, the signature alkaloid of Nicotiana species responsible for the addictive properties of human tobacco smoking, functions as a defensive neurotoxin against attacking herbivores. However, the evolution of the genetic features that contributed to the assembly of the nicotine biosynthetic pathway remains unknown. We sequenced and assembled genomes of two wild tobaccos, Nicotiana attenuata (2.5 Gb) and Nicotiana obtusifolia (1.5 Gb), two ecological models for investigating adaptive traits in nature. We show that after the Solanaceae whole-genome triplication event, a repertoire of rapidly expanding transposable elements (TEs) bloated these Nicotiana genomes, promoted expression divergences among duplicated genes, and contributed to the evolution of herbivory-induced signaling and defenses, including nicotine biosynthesis. The biosynthetic machinery that allows for nicotine synthesis in the roots evolved from the stepwise duplications of two ancient primary metabolic pathways: the polyamine and nicotinamide adenine dinucleotide (NAD) pathways. In contrast to the duplication of the polyamine pathway that is shared among several solanaceous genera producing polyamine-derived tropane alkaloids, we found that lineage-specific duplications within the NAD pathway and the evolution of root-specific expression of the duplicated Solanaceae-specific ethylene response factor that activates the expression of all nicotine biosynthetic genes resulted in the innovative and efficient production of nicotine in the genus Nicotiana Transcription factor binding motifs derived from TEs may have contributed to the coexpression of nicotine biosynthetic pathway genes and coordinated the metabolic flux. Together, these results provide evidence that TEs and gene duplications facilitated the emergence of a key metabolic innovation relevant to plant fitness.


Assuntos
Nicotiana/genética , Nicotina/biossíntese , Alcaloides/biossíntese , Sequência de Bases , Vias Biossintéticas/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotina/genética , Nicotina/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fatores de Transcrição/metabolismo
7.
BMC Genomics ; 18(1): 79, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086860

RESUMO

BACKGROUND: Nicotiana attenuata (coyote tobacco) is an ecological model for studying plant-environment interactions and plant gene function under real-world conditions. During the last decade, large amounts of genomic, transcriptomic and metabolomic data have been generated with this plant which has provided new insights into how native plants interact with herbivores, pollinators and microbes. However, an integrative and open access platform that allows for the efficient mining of these -omics data remained unavailable until now. DESCRIPTION: We present the Nicotiana attenuata Data Hub (NaDH) as a centralized platform for integrating and visualizing genomic, phylogenomic, transcriptomic and metabolomic data in N. attenuata. The NaDH currently hosts collections of predicted protein coding sequences of 11 plant species, including two recently sequenced Nicotiana species, and their functional annotations, 222 microarray datasets from 10 different experiments, a transcriptomic atlas based on 20 RNA-seq expression profiles and a metabolomic atlas based on 895 metabolite spectra analyzed by mass spectrometry. We implemented several visualization tools, including a modified version of the Electronic Fluorescent Pictograph (eFP) browser, co-expression networks and the Interactive Tree Of Life (iTOL) for studying gene expression divergence among duplicated homologous. In addition, the NaDH allows researchers to query phylogenetic trees of 16,305 gene families and provides tools for analyzing their evolutionary history. Furthermore, we also implemented tools to identify co-expressed genes and metabolites, which can be used for predicting the functions of genes. Using the transcription factor NaMYB8 as an example, we illustrate that the tools and data in NaDH can facilitate identification of candidate genes involved in the biosynthesis of specialized metabolites. CONCLUSION: The NaDH provides interactive visualization and data analysis tools that integrate the expression and evolutionary history of genes in Nicotiana, which can facilitate rapid gene discovery and comparative genomic analysis. Because N. attenuata shares many genome-wide features with other Nicotiana species including cultivated tobacco, and hence NaDH can be a resource for exploring the function and evolution of genes in Nicotiana species in general. The NaDH can be accessed at: http://nadh.ice.mpg.de/ .


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica/métodos , Metaboloma , Metabolômica/métodos , Nicotiana/genética , Nicotiana/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Filogenia , Nicotiana/classificação
8.
Elife ; 52016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27813478

RESUMO

Herbivore-induced defenses are widespread, rapidly evolving and relevant for plant fitness. Such induced defenses are often mediated by early defense signaling (EDS) rapidly activated by the perception of herbivore associated elicitors (HAE) that includes transient accumulations of jasmonic acid (JA). Analyzing 60 HAE-induced leaf transcriptomes from closely-related Nicotiana species revealed a key gene co-expression network (M4 module) which is co-activated with the HAE-induced JA accumulations but is elicited independently of JA, as revealed in plants silenced in JA signaling. Functional annotations of the M4 module were consistent with roles in EDS and a newly identified hub gene of the M4 module (NaLRRK1) mediates a negative feedback loop with JA signaling. Phylogenomic analysis revealed preferential gene retention after genome-wide duplications shaped the evolution of HAE-induced EDS in Nicotiana. These results highlight the importance of genome-wide duplications in the evolution of adaptive traits in plants.


Assuntos
Evolução Molecular , Herbivoria/fisiologia , Nicotiana/genética , Nicotiana/fisiologia , Imunidade Vegetal , Transdução de Sinais , Ciclopentanos/metabolismo , Duplicação Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Oxilipinas/metabolismo
9.
PLoS One ; 11(8): e0161741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27560164

RESUMO

The wine and beer yeast Dekkera bruxellensis thrives in environments that are harsh and limiting, especially in concentrations with low oxygen and high ethanol. Its different strains' chromosomes greatly vary in number (karyotype). This study isolates two novel centromeric loci (CEN1 and CEN2), which support both the yeast's autonomous replication and the stable maintenance of plasmids. In the sequenced genome of the D. bruxellensis strain CBS 2499, CEN1 and CEN2 are each present in one copy. They differ from the known "point" CEN elements, and their biological activity is retained within ~900-1300 bp DNA segments. CEN1 and CEN2 have features of both "point" and "regional" centromeres: They contain conserved DNA elements, ARSs, short repeats, one tRNA gene, and transposon-like elements within less than 1 kb. Our discovery of a miniature inverted-repeat transposable element (MITE) next to CEN2 is the first report of such transposons in yeast. The transformants carrying circular plasmids with cloned CEN1 and CEN2 undergo a phenotypic switch: They form fluffy colonies and produce three times more biofilm. The introduction of extra copies of CEN1 and CEN2 promotes both genome rearrangements and ploidy shifts, with these effects mediated by homologous recombination (between circular plasmid and genome centromere copy) or by chromosome breakage when integrated. Also, the proximity of the MITE-like transposon to CEN2 could translocate CEN2 within the genome or cause chromosomal breaks, so promoting genome dynamics. With extra copies of CEN1 and CEN2, the yeast's enhanced capacities to rearrange its genome and to change its gene expression could increase its abilities for exploiting new and demanding niches.


Assuntos
Centrômero/genética , Dekkera/genética , Genes Fúngicos , Loci Gênicos , Instabilidade Genômica , Cerveja/microbiologia , Biofilmes , Sequência Conservada , Dekkera/fisiologia , Recombinação Homóloga , Ploidias , Vinho/microbiologia
11.
Appl Microbiol Biotechnol ; 100(7): 3219-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743658

RESUMO

Dekkera bruxellensis is a non-conventional Crabtree-positive yeast with a good ethanol production capability. Compared to Saccharomyces cerevisiae, its tolerance to acidic pH and its utilization of alternative carbon sources make it a promising organism for producing biofuel. In this study, we developed an auxotrophic transformation system and an expression vector, which enabled the manipulation of D. bruxellensis, thereby improving its fermentative performance. Its gene ADH3, coding for alcohol dehydrogenase, was cloned and overexpressed under the control of the strong and constitutive promoter TEF1. Our recombinant D. bruxellensis strain displayed 1.4 and 1.7 times faster specific glucose consumption rate during aerobic and anaerobic glucose fermentations, respectively; it yielded 1.2 times and 1.5 times more ethanol than did the parental strain under aerobic and anaerobic conditions, respectively. The overexpression of ADH3 in D. bruxellensis also reduced the inhibition of fermentation by anaerobiosis, the "Custer effect". Thus, the fermentative capacity of D. bruxellensis could be further improved by metabolic engineering.


Assuntos
Álcool Desidrogenase/metabolismo , Dekkera/genética , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Aerobiose , Álcool Desidrogenase/genética , Anaerobiose , Biocombustíveis , Clonagem Molecular , Dekkera/enzimologia , Fermentação , Proteínas Fúngicas/genética , Expressão Gênica , Engenharia Genética , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Plant J ; 84(1): 228-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26306554

RESUMO

Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory.


Assuntos
Herbivoria/fisiologia , Nicotiana/genética , Nicotiana/parasitologia , Processamento Alternativo/genética , Animais , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética
13.
FEMS Yeast Res ; 15(2)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673757

RESUMO

Dekkera bruxellensis and Saccharomyces cerevisiae are considered two phylogenetically distant relatives, but they share several industrial relevant traits such as the ability to produce ethanol under aerobic conditions (Crabtree effect), high tolerance towards ethanol and acids, and ability to grow without oxygen. Beside a huge adaptability, D. bruxellensis exhibits a broader spectrum in utilization of carbon and nitrogen sources in comparison to S. cerevisiae. With the aim to better characterize its carbon source metabolism and regulation, the usage of galactose and the role that glucose plays on sugar metabolism were investigated in D. bruxellensis CBS 2499. The results indicate that in this yeast galactose is a non-fermentable carbon source, in contrast to S. cerevisiae that can ferment it. In particular, its metabolism is affected by the nitrogen source. Interestingly, D. bruxellensis CBS 2499 exhibits the 'short-term Crabtree effect', and the expression of genes involved in galactose utilization and in respiratory metabolism is repressed by glucose, similarly to what occurs in S. cerevisiae.


Assuntos
Brettanomyces/genética , Brettanomyces/metabolismo , Galactose/metabolismo , Redes e Vias Metabólicas/genética , Ácido Acético/metabolismo , Carbono/metabolismo , Etanol/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Nitrogênio/metabolismo
14.
BMC Bioinformatics ; 15 Suppl 12: S8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474487

RESUMO

BACKGROUND: The 3D chromatogram generated by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) has been researched widely in the field of herbal medicine, grape wine, agriculture, petroleum and so on. Currently, most of the methods used for separating a 3D chromatogram need to know the compounds' number in advance, which could be impossible especially when the compounds are complex or white noise exist. New method which extracts compounds from 3D chromatogram directly is needed. METHODS: In this paper, a new separation model named parallel Independent Component Analysis constrained by Reference Curve (pICARC) was proposed to transform the separation problem to a multi-parameter optimization issue. It was not necessary to know the number of compounds in the optimization. In order to find all the solutions, an algorithm named multi-areas Genetic Algorithm (mGA) was proposed, where multiple areas of candidate solutions were constructed according to the fitness and distances among the chromosomes. RESULTS: Simulations and experiments on a real life HPLC-DAD data set were used to demonstrate our method and its effectiveness. Through simulations, it can be seen that our method can separate 3D chromatogram to chromatogram peaks and spectra successfully even when they severely overlapped. It is also shown by the experiments that our method is effective to solve real HPLC-DAD data set. CONCLUSIONS: Our method can separate 3D chromatogram successfully without knowing the compounds' number in advance, which is fast and effective.


Assuntos
Algoritmos , Cromatografia Líquida de Alta Pressão/métodos , Simulação por Computador
15.
Int J Food Microbiol ; 157(2): 202-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22663979

RESUMO

The yeast Dekkera/Brettanomyces bruxellensis can cause enormous economic losses in wine industry due to production of phenolic off-flavor compounds. D. bruxellensis is a distant relative of baker's yeast Saccharomyces cerevisiae. Nevertheless, these two yeasts are often found in the same habitats and share several food-related traits, such as production of high ethanol levels and ability to grow without oxygen. In some food products, like lambic beer, D. bruxellensis can importantly contribute to flavor development. We determined the 13.4 Mb genome sequence of the D. bruxellensis strain Y879 (CBS2499) and deduced the genetic background of several "food-relevant" properties and evolutionary history of this yeast. Surprisingly, we find that this yeast is phylogenetically distant to other food-related yeasts and most related to Pichia (Komagataella) pastoris, which is an aerobic poor ethanol producer. We further show that the D. bruxellensis genome does not contain an excess of lineage specific duplicated genes nor a horizontally transferred URA1 gene, two crucial events that promoted the evolution of the food relevant traits in the S. cerevisiae lineage. However, D. bruxellensis has several independently duplicated ADH and ADH-like genes, which are likely responsible for metabolism of alcohols, including ethanol, and also a range of aromatic compounds.


Assuntos
Dekkera/genética , Filogenia , Vinho/microbiologia , Álcool Desidrogenase/genética , Evolução Biológica , Brettanomyces , Dekkera/metabolismo , Etanol/metabolismo , Genoma , Fenóis/metabolismo , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...