Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 30(10): 1235-1247.e6, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37531956

RESUMO

Targeting transcription replication conflicts, a major source of endogenous DNA double-stranded breaks and genomic instability could have important anticancer therapeutic implications. Proliferating cell nuclear antigen (PCNA) is critical to DNA replication and repair processes. Through a rational drug design approach, we identified a small molecule PCNA inhibitor, AOH1996, which selectively kills cancer cells. AOH1996 enhances the interaction between PCNA and the largest subunit of RNA polymerase II, RPB1, and dissociates PCNA from actively transcribed chromatin regions, while inducing DNA double-stranded breaks in a transcription-dependent manner. Attenuation of RPB1 interaction with PCNA, by a point mutation in RPB1's PCNA-binding region, confers resistance to AOH1996. Orally administrable and metabolically stable, AOH1996 suppresses tumor growth as a monotherapy or as a combination treatment but causes no discernable side effects. Inhibitors of transcription replication conflict resolution may provide a new and unique therapeutic avenue for exploiting this cancer-selective vulnerability.


Assuntos
Cromatina , Neoplasias , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Neoplasias/tratamento farmacológico , DNA , Replicação do DNA
2.
Cells ; 10(11)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34831131

RESUMO

Peptides are increasingly being developed for use as therapeutics to treat many ailments, including cancer. Therapeutic peptides have the advantages of target specificity and low toxicity. The anticancer effects of a peptide can be the direct result of the peptide binding its intended target, or the peptide may be conjugated to a chemotherapy drug or radionuclide and used to target the agent to cancer cells. Peptides can be targeted to proteins on the cell surface, where the peptide-protein interaction can initiate internalization of the complex, or the peptide can be designed to directly cross the cell membrane. Peptides can induce cell death by numerous mechanisms including membrane disruption and subsequent necrosis, apoptosis, tumor angiogenesis inhibition, immune regulation, disruption of cell signaling pathways, cell cycle regulation, DNA repair pathways, or cell death pathways. Although using peptides as therapeutics has many advantages, peptides have the disadvantage of being easily degraded by proteases once administered and, depending on the mode of administration, often have difficulty being adsorbed into the blood stream. In this review, we discuss strategies recently developed to overcome these obstacles of peptide delivery and bioavailability. In addition, we present many examples of peptides developed to fight cancer.


Assuntos
Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Peptídeos Penetradores de Células/farmacologia , Humanos , Modelos Biológicos , Nanopartículas/química , Peptídeos/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo
3.
Ann Surg ; 274(2): 306-311, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33938490

RESUMO

OBJECTIVE: We hypothesized that OR airborne PM was different in quantity and mutagenic potential than office air and cigarette smoke. SUMMARY OF BACKGROUND DATA: Exposure to surgical smoke has been equated to cigarette smoking and thought to be hazardous to health care workers despite limited data. METHODS: PM was measured during 15 operations in ORs with 24.8 ±â€Š2.0 air changes/h, and in controls (cigarettes, office air with 1.9-2.9 air changes/h). Mutagenic potential was assessed by gamma Histone 2A family member X staining of DNA damage in small airway epithelial cells co-cultured with PM. RESULTS: Average PM concentration during surgery was 0.002 ±â€Š0.002 mg/m3 with maximum values at 1.08 ±â€Š1.30 mg/m3. Greater PM correlated with more diathermy (ρ = 0.69, P = 0.006). Values were most often near zero, resulting in OR average values similar to office air (0.002 ±â€Š0.001 mg/m3) (P = 0.32). Cigarette smoke average PM concentration was significantly higher, 4.8 ±â€Š5.6 mg/m3 (P < 0.001). PM collected from 14 days of OR air caused DNA damage to 1.6% ±â€Š2.7% of cultured cells, significantly less than that from office air (27.7% ±â€Š11.7%, P = 0.02), and cigarette smoke (61.3% ±â€Š14.3%, P < 0.001). CONCLUSIONS: The air we breathe during surgery has negligible quantities of PM and mutagenic potential, likely due to low frequency of diathermy use coupled with high airflow. This suggests that exposure to surgical smoke is associated with minimal occupational risk.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Lesão por Inalação de Fumaça/etiologia , Fumaça/efeitos adversos , Procedimentos Cirúrgicos Operatórios , Humanos , Material Particulado/efeitos adversos
4.
Mol Ther Oncolytics ; 17: 250-256, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32368614

RESUMO

Pancreatic ductal adenocarcinoma is a particularly difficult cancer to treat due to a lack of effective screening or treatment. Pancreatic cancer cells exhibit high proliferating cell nuclear antigen (PCNA) expression, which is associated with poor prognosis. PCNA, an important nuclear DNA replication and repair protein, regulates a myriad of proteins via the interdomain connector loop. Within this region, amino acids 126-133 are critical for PCNA interactions in cancer cells. Here, we investigate the ability of a decoy cell-penetrating peptide, R9-caPeptide, that mimics the interdomain connector loop region of PCNA to disrupt PCNA-protein interactions in pancreatic cancer cells. Our data suggest that R9-caPeptide causes dose-dependent toxicity in a panel of pancreatic cancer cell lines by inhibiting DNA replication fork progression and PCNA-regulated DNA repair, ultimately causing lethal DNA damage. Overall, these studies lay the foundation for novel therapeutic strategies that target PCNA in pancreatic cancer.

5.
Clin Cancer Res ; 24(23): 6053-6065, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29967249

RESUMO

PURPOSE: Proliferating cell nuclear antigen (PCNA) plays an essential role in regulating DNA synthesis and repair and is indispensable to cancer cell growth and survival. We previously reported a novel cancer associated PCNA isoform (dubbed caPCNA), which was ubiquitously expressed in a broad range of cancer cells and tumor tissues, but not significantly in nonmalignant cells. We found the L126-Y133 region of caPCNA is structurally altered and more accessible to protein-protein interaction. A cell-permeable peptide harboring the L126-Y133 sequence blocked PCNA interaction in cancer cells and selectively kills cancer cells and xenograft tumors. On the basis of these findings, we sought small molecules targeting this peptide region as potential broad-spectrum anticancer agents. EXPERIMENTAL DESIGN: By computer modeling and medicinal chemistry targeting a surface pocket partly delineated by the L126-Y133 region of PCNA, we identified a potent PCNA inhibitor (AOH1160) and characterized its therapeutic properties and potential toxicity. RESULTS: AOH1160 selectively kills many types of cancer cells at below micromolar concentrations without causing significant toxicity to a broad range of nonmalignant cells. Mechanistically, AOH1160 interferes with DNA replication, blocks homologous recombination-mediated DNA repair, and causes cell-cycle arrest. It induces apoptosis in cancer cells and sensitizes them to cisplatin treatment. AOH1160 is orally available to animals and suppresses tumor growth in a dosage form compatible to clinical applications. Importantly, it does not cause significant toxicity at 2.5 times of an effective dose. CONCLUSIONS: These results demonstrated the favorable therapeutic properties and the potential of AOH1160 as a broad-spectrum therapeutic agent for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quebras de DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Antígeno Nuclear de Célula em Proliferação/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
6.
PLoS One ; 11(12): e0169259, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28036377

RESUMO

We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.


Assuntos
DNA Polimerase Dirigida por DNA/análise , DNA Polimerase Dirigida por DNA/isolamento & purificação , Eletroforese/métodos , Complexos Multienzimáticos/análise , Complexos Multienzimáticos/isolamento & purificação , Antígenos Virais de Tumores/genética , Extratos Celulares/química , Linhagem Celular Tumoral , DNA Polimerase I/isolamento & purificação , DNA Polimerase II/isolamento & purificação , DNA Polimerase III/isolamento & purificação , Replicação do DNA , DNA Topoisomerases Tipo I/isolamento & purificação , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/análise , Origem de Replicação/genética , Proteína de Replicação A/isolamento & purificação , Proteína de Replicação C/isolamento & purificação , Vírus 40 dos Símios/genética
7.
EBioMedicine ; 2(12): 1923-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26844271

RESUMO

Dysregulated expression of MYC family genes is a hallmark of many malignancies. Unfortunately, these proteins are not amenable to blockade by small molecules or protein-based therapeutic agents. Therefore, we must find alternative approaches to target MYC-driven cancers. Amplification of MYCN, a MYC family member, predicts high-risk neuroblastoma (NB) disease. We have shown that R9-caPep blocks the interaction of PCNA with its binding partners and selectively kills human NB cells, especially those with MYCN amplification, and we now show the mechanism. We found elevated levels of DNA replication stress in MYCN-amplified NB cells. R9-caPep exacerbated DNA replication stress in MYCN-amplified NB cells and NB cells with an augmented level of MYC by interfering with DNA replication fork extension, leading to Chk1 dependence and susceptibility to Chk1 inhibition. We describe how these effects may be exploited for treating NB.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Amplificação de Genes , Neuroblastoma/genética , Neuroblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/farmacologia , Quinase 1 do Ponto de Checagem , Replicação do DNA/efeitos dos fármacos , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Modelos Moleculares , Proteína Proto-Oncogênica N-Myc , Antígeno Nuclear de Célula em Proliferação/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico
8.
Cancer Chemother Pharmacol ; 74(5): 981-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25190177

RESUMO

BACKGROUND: An 8 amino acid peptide sequence derived from proliferating cell nuclear antigen (PCNA) has been shown to effectively kill several breast cancer and neuroblastoma cell lines when added exogenously to cell cultures. METHODS: In this study, the expression of the 8 amino acid peptide sequence (caPeptide) was placed under control of a tetracycline responsive promoter in MDA-MB-231 cells. RESULTS: Endogenous expression of the peptide resulted in an increase in genomic DNA damage. CaPeptide induction combined with treatment of sublethal doses of cisplatin resulted in a marked increase in death of the cisplatin-resistant MDA-MB-231 cell line. CaPeptide was found to interact with POLD3, one of the subunits of DNA polymerase delta necessary for binding to PCNA. CONCLUSION: These results suggest an important line of inquiry into the possible role that caPeptide might play in the reversal of cisplatin resistance in breast and other cancers. This is of particular interest in those cancers where cisplatin is the first line of chemotherapy and where the acquisition of resistance is a common malady.


Assuntos
Cisplatino/farmacologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , DNA Polimerase III/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 106(51): 21655-9, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19955415

RESUMO

Drosha-processed microRNAs (miRNAs) have been shown to be exported from the nucleus to the cytoplasm by Exportin 5, where they are processed a second time to generate mature miRNAs. In this work we show that miRNAs also use CRM1 for nuclear-cytoplasmic shuttling. Inhibition of CRM1 by Leptomycin B results in nuclear accumulation of miRNA guide sequences. Nuclear to cytoplasmic transport can be actively competed by synthetic small interfering RNAs, indicating that this pathway is shared by different classes of processed small RNAs. We also find that CRM1 coimmunoprecipitates with Ago-1, Ago-2, Topo2alpha, EzH2, and Mta, consistent with a role of Argonautes and small RNAs in chromatin remodeling.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Carioferinas/fisiologia , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Transporte Biológico , Northern Blotting , Linhagem Celular , Humanos , Imunoprecipitação , Proteína Exportina 1
10.
Nucleic Acids Res ; 35(15): 5154-64, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17660190

RESUMO

Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs.


Assuntos
Interferência de RNA , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Linhagem Celular , Carioferinas/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA