Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626930

RESUMO

Here, a brief summary of the biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) and ethylene in plants, as well as overviews of how ACC and ethylene act as signaling molecules in plants, is presented. Next, how the bacterial enzyme ACC deaminase cleaves plant-produced ACC and thereby decreases or prevents the ethylene or ACC modulation of plant gene expression is considered. A detailed model of ACC deaminase functioning, including the role of indoleacetic acid (IAA), is presented. Given that ACC is a signaling molecule under some circumstances, this suggests that ACC, which appears to have evolved prior to ethylene, may have been a major signaling molecule in primitive plants prior to the evolution of ethylene and ethylene signaling. Due to their involvement in stimulating ethylene production, the role of D-amino acids in plants is then considered. The enzyme D-cysteine desulfhydrase, which is structurally very similar to ACC deaminase, is briefly discussed and the possibility that ACC deaminase arose as a variant of D-cysteine desulfhydrase is suggested.

2.
Microorganisms ; 10(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35630335

RESUMO

Bacterial endophytes were isolated from nodules of pea and fava bean. The strains were identified and characterized for plant beneficial activities (phosphate solubilization, synthesis of indole acetic acid and siderophores) and salt tolerance. Based on these data, four strains of Rahnella aquatilis and three strains of Serratia plymuthica were selected. To shed light on the mechanisms underlying salt tolerance, the proteome of the two most performant strains (Ra4 and Sp2) grown in the presence or not of salt was characterized. The number of proteins expressed by the endophytes was higher in the presence of salt. The modulated proteome consisted of 302 (100 up-regulated, 202 down-regulated) and 323 (206 up-regulated, 117 down-regulated) proteins in Ra4 and Sp2, respectively. Overall, proteins involved in abiotic stress responses were up-regulated, while those involved in metabolism and flagellum structure were down-regulated. The main up-regulated proteins in Sp2 were thiol: disulfide interchange protein DsbA, required for the sulfur binding formation in periplasmic proteins, while in Ra4 corresponded to the soluble fraction of ABC transporters, having a role in compatible solute uptake. Our results demonstrated a conserved response to salt stress in the two taxonomically related species.

3.
Life (Basel) ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35454988

RESUMO

Artemisia annua L. is a medicinal plant appreciated for the production of artemisinin, a molecule used for malaria treatment. However, the natural concentration of artemisinin in planta is low. Plant nutrition, in particular phosphorus, and arbuscular mycorrhizal (AM) fungi can affect both plant biomass and secondary metabolite production. In this work, A. annua plants were ino- culated or not with the AM fungus Funneliformis mosseae BEG12 and cultivated for 2 months in controlled conditions at three different phosphatic (P) concentrations (32, 96, and 288 µM). Plant growth parameters, leaf photosynthetic pigment concentrations, artemisinin production, and mineral uptake were evaluated. The different P levels significantly affected the plant shoot growth, AM fungal colonization, and mineral acquisition. High P levels negatively influenced mycorrhizal colonization. The artemisinin concentration was inversely correlated to the P level in the substrate. The fungus mainly affected root growth and nutrient uptake and significantly lowered leaf artemisinin concentration. In conclusion, P nutrition can influence plant biomass production and the lowest phosphate level led to the highest artemisinin concentration, irrespective of the plant mineral uptake. Plant responses to AM fungi can be modulated by cost-benefit ratios of the mutualistic exchange between the partners and soil nutrient availability.

4.
Front Microbiol ; 12: 676610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349738

RESUMO

Arbuscular mycorrhizal fungi (AMF) are beneficial soil microorganisms that can establish symbiotic associations with Vitis vinifera roots, resulting in positive effects on grapevine performance, both in terms of water use efficiency, nutrient uptake, and replant success. Grapevine is an important perennial crop cultivated worldwide, especially in Mediterranean countries. In Italy, Piedmont is one of the regions with the longest winemaking tradition. In the present study, we characterized the AMF communities of the soil associated or not with the roots of V. vinifera cv. Pinot Noir cultivated in a vineyard subjected to conventional management using 454 Roche sequencing technology. Samplings were performed at two plant phenological stages (flowering and early fruit development). The AMF community was dominated by members of the family Glomeraceae, with a prevalence of the genus Glomus and the species Rhizophagus intraradices and Rhizophagus irregularis. On the contrary, the genus Archaeospora was the only one belonging to the family Archaeosporaceae. Since different AMF communities occur in the two considered soils, independently from the plant phenological stage, a probable role of V. vinifera in determining the AMF populations associated to its roots has been highlighted.

5.
Microorganisms ; 9(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201731

RESUMO

Algeria is the largest country in Africa characterized by semi-arid and arid sites, located in the North, and hypersaline zones in the center and South of the country. Several autochthonous plants are well known as medicinal plants, having in common tolerance to aridity, drought and salinity. In their natural environment, they live with a great amount of microbial species that altogether are indicated as plant microbiota, while the plants are now viewed as a "holobiont". In this work, the microbiota of the soil associated to the roots of fourteen economically relevant autochthonous plants from Algeria have been characterized by an innovative metagenomic approach with a dual purpose: (i) to deepen the knowledge of the arid and semi-arid environment and (ii) to characterize the composition of bacterial communities associated with indigenous plants with a strong economic/commercial interest, in order to make possible the improvement of their cultivation. The results presented in this work highlighted specific signatures which are mainly determined by climatic zone and soil properties more than by the plant species.

7.
Mycorrhiza ; 30(5): 601-610, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32621137

RESUMO

The concept of symbiosis can be described as a continuum of interactions between organisms ranging from mutualism to parasitism that can also change over time. Arbuscular mycorrhizal fungi (AMF) are among the most important obligate plant symbionts. Once the symbiosis is well established, mycorrhizal plants are more tolerant to biotic or abiotic stresses, so the AMF relationship with the host plant is generally described as mutualistic. However, little is known about AMF effects on the plant during the early stages of root colonization. The aim of this work was to assess the type of interaction (mutualistic or parasitic) between the arbuscular mycorrhizal (AM) fungus Funelliformis mosseae and Solanum lycopersicum cv. Rio Grande plants, at 7, 14, 21, and 28 days after inoculation (DAI), considering that in the adopted experimental design (one plant per pot), the seedling was the only carbon source for fungus development in the absence of common mycorrhizal networks with other plants. At each harvest, mycorrhizal colonization, shoot and root weights, morphometric parameters, and photosynthetic efficiency were evaluated. The presence of the AM fungus in the tomato root system was observed starting from the 14th DAI, and its level increased over time. Few effects of the fungus presence on the considered parameters were observed, and no stress symptoms ever appeared; so, we can state that the fungus behaved as a mutualistic symbiont during the early stages of plant growth. Moreover, a trend towards a positive effect on plant growth was observed at 28 DAI in mycorrhizal plants.


Assuntos
Glomeromycota , Micorrizas , Solanum lycopersicum , Raízes de Plantas , Simbiose
8.
Biology (Basel) ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498442

RESUMO

Salinity and drought are the most important abiotic stresses hampering crop growth and yield. It has been estimated that arid areas cover between 41% and 45% of the total Earth area worldwide. At the same time, the world's population is going to soon reach 9 billion and the survival of this huge amount of people is dependent on agricultural products. Plants growing in saline/arid soil shows low germination rate, short roots, reduced shoot biomass, and serious impairment of photosynthetic efficiency, thus leading to a substantial loss of crop productivity, resulting in significant economic damage. However, plants should not be considered as single entities, but as a superorganism, or a holobiont, resulting from the intimate interactions occurring between the plant and the associated microbiota. Consequently, it is very complex to define how the plant responds to stress on the basis of the interaction with its associated plant growth-promoting bacteria (PGPB). This review provides an overview of the physiological mechanisms involved in plant survival in arid and saline soils and aims at describing the interactions occurring between plants and its bacteriome in such perturbed environments. The potential of PGPB in supporting plant survival and fitness in these environmental conditions has been discussed.

9.
Sci Rep ; 10(1): 6453, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296119

RESUMO

The structure of the bacteriome associated with grapevine roots can affect plant development, health and grape quality. We previously investigated the bacterial biodiversity of the Vitis vinifera cv. Pinot Noir rhizosphere in a vineyard subjected to integrated pest management. The aim of this work is to characterize the bacteriome of V. vinifera cv. Pinot Noir in a conventionally managed vineyard using a metabarcoding approach. Comparisons between the microbial community structure in bulk soil and rhizosphere (variable space) were performed and shifts of bacteriome according to two sampling times (variable time) were characterized. Bacterial biodiversity was higher at the second than at the first sampling and did not differ according to the variable space. Actinobacteria was the dominant class, with Gaiella as the most represented genus in all the samples. Among Proteobacteria, the most represented classes were Alpha, Beta and Gamma-Proteobacteria, with higher abundance at the second than at the first sampling time. Bradyrhizobium was the most frequent genus among Alpha-Proteobacteria, while Burkholderia was the predominant Beta-Proteobacteria. Among Firmicutes, the frequency of Staphylococcus was higher than 60% in bulk soil and rhizosphere. Finally, the sampling time can be considered as one of the drivers responsible for the bacteriome variations assessed.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Rizosfera , Microbiologia do Solo , Vitis/microbiologia , Produção Agrícola , Fazendas , Raízes de Plantas/microbiologia , Vitis/fisiologia
10.
Front Plant Sci ; 9: 1611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505312

RESUMO

Arbuscular mycorrhizal fungi (AMF) colonize the roots of most terrestrial plant species, improving plant growth, nutrient uptake and biotic/abiotic stress resistance and tolerance. Similarly, plant growth promoting bacteria (PGPB) enhance plant fitness and production. In this study, three different AMF (Funneliformis mosseae, Septoglomus viscosum, and Rhizophagus irregularis) were used in combination with three different strains of Pseudomonas sp. (19Fv1t, 5Vm1K and Pf4) to inoculate plantlets of Fragaria × ananassa var. Eliana F1. The effects of the different fungus/bacterium combinations were assessed on plant growth parameters, fruit production and quality, including health-promoting compounds. Inoculated and uninoculated plants were maintained in a greenhouse for 4 months and irrigated with a nutrient solution at two different phosphate levels. The number of flowers and fruits were recorded weekly. At harvest, fresh and dry weights of roots and shoots, mycorrhizal colonization and concentration of leaf photosynthetic pigments were measured in each plant. The following fruit parameters were recorded: pH, titratable acids, concentration of organic acids, soluble sugars, ascorbic acids, and anthocyanidins; volatile and elemental composition were also evaluated. Data were statistically analyzed by ANOVA and PCA/PCA-DA. Mycorrhizal colonization was higher in plants inoculated with R. irregularis, followed by F. mosseae and S. viscosum. In general, AMF mostly affected the parameters associated with the vegetative portion of the plant, while PGPB were especially relevant for fruit yield and quality. The plant physiological status was differentially affected by inoculations, resulting in enhanced root and shoot biomass. Inoculation with Pf4 bacterial strain increased flower and fruit production per plant and malic acid content in fruits, while decreased the pH value, regardless of the used fungus. Inoculations affected fruit nutritional quality, increasing sugar and anthocyanin concentrations, and modulated pH, malic acid, volatile compounds and elements. In the present study, we show for the first time that strawberry fruit concentration of some elements and/or volatiles can be affected by the presence of specific beneficial soil microorganisms. In addition, our results indicated that it is possible to select the best plant-microorganism combination for field applications, and improving fruit production and quality, also in terms of health promoting properties.

11.
Front Microbiol ; 8: 1528, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855895

RESUMO

Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

12.
Mycorrhiza ; 27(1): 1-11, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27539491

RESUMO

The aim of this work was to assess the effects of plant-beneficial microorganisms (two Pseudomonas strains and a mixed mycorrhizal inoculum, alone or in combination) on the quality of tomato fruits of plants grown in the field and subjected to reduced fertilization. Pseudomonas strain 19Fv1T was newly characterized during this study. The size and quality of the fruits (concentration of sugars, organic acids and vitamin C) were assessed. The microorganisms positively affected the flower and fruit production and the concentrations of sugars and vitamins in the tomato fruits. In particular, the most important effect induced by arbuscular mycorrhizal (AM) fungi was an improvement of citric acid concentration, while bacteria positively modulated sugar production and the sweetness of the tomatoes. The novelty of the present work is the application of soil microorganisms in the field, in a real industrial tomato farm. This approach provided direct information about the application of inocula, allowed the reduction of chemical inputs and positively influenced tomato quality.


Assuntos
Frutas/química , Micorrizas/fisiologia , Pseudomonas/fisiologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Qualidade dos Alimentos , Valor Nutritivo , Paladar
13.
Plant Physiol Biochem ; 107: 354-363, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27362299

RESUMO

Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We provide experimental support for a primary role of both RiMST5 and RiMST6 in sugar uptake directly from the soil. The expression patterns of RiMSTs in response to partial light deprivation and to interaction with different host plants were investigated. Expression of genes coding for RiMSTs was transiently enhanced after 48 h of shading and was unambiguously dependent on the host plant species. These results cast doubt on the 'fair trade' principle under carbon-limiting conditions. Therefore, in light of these findings, the possible mechanisms involved in the modulation between mutualism and parasitism in plant-AM fungus interactions are discussed.


Assuntos
Proteínas Fúngicas/metabolismo , Glomeromycota/fisiologia , Medicago/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Monossacarídeos/metabolismo , Micorrizas/fisiologia , Solo/química , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucose/metabolismo , Luz , Medicago/genética , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos da radiação
14.
Environ Sci Pollut Res Int ; 22(23): 18616-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26423290

RESUMO

High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands.


Assuntos
Bactérias/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Nitratos/metabolismo , Poaceae/metabolismo , Compostos de Potássio/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água , Eutrofização , Nitratos/análise , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Poaceae/microbiologia , Águas Residuárias/química , Purificação da Água/instrumentação , Purificação da Água/métodos , Áreas Alagadas
15.
Mycorrhiza ; 25(3): 181-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25169060

RESUMO

There is increasing interest in the quality of crops because of the implications concerning health, economic revenue, and food quality. Here we tested if inoculation with a mixture of arbuscular mycorrhizal fungi (AMF) and/or two strains of plant growth-promoting bacteria (PGPB), in conditions of reduced chemical inputs, affects the quality and yield of strawberry fruits. Fruit quality was measured by concentrations of soluble sugars, various organic acids, and two vitamins (ascorbic and folic acid). Co-inoculation with the AMF and each of the two PGPB resulted in increased flower and fruit production, larger fruit size, and higher concentrations of sugars and ascorbic and folic acid in comparison with fruits of uninoculated plants. These results provide further evidence that rhizospheric microorganisms affect fruit crop quality and show that they do so even under conditions of reduced chemical fertilization and can thus be exploited for sustainable agriculture.


Assuntos
Fragaria/microbiologia , Fungos/fisiologia , Micorrizas/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Pseudomonas/fisiologia , Vitaminas/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Nitrogênio/análise , Fósforo/análise , Microbiologia do Solo
16.
J Environ Manage ; 132: 9-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24252633

RESUMO

Phytoremediation is a cost-effective and environment friendly in situ technique for the reclamation of heavy metal-polluted soils. The efficacy of this technique, which relies on tolerant plant species, can be improved by the use of chelating agents. A pot experiment was carried out to evaluate the phytoextraction and phytostabilisation capacities of a white poplar (Populus alba L.) clone named AL35 previously selected for its marked tolerance to copper (Cu) and zinc (Zn). Cuttings were grown on agricultural soil highly contaminated with Cu and Zn, in the presence or not (controls) of a chelant mixture (EDTA/EDDS) known to enhance metal bioavailability and, hence, uptake by plant roots, or the not yet investigated synthetic, highly biodegradable polyaspartic acid (PASP). Both chelant treatments improved the phytostabilisation of Cu and Zn in AL35 plants, whilst the phytoextraction capacity was enhanced only in the case of Cu. Considering that the effectiveness of PASP as phytostabilizer was comparable or better than that of EDTA/EDDS, the low cost of its large-scale chemical synthesis and its biodegradability makes it a good candidate for chelant-enhanced metal phytoextraction from soil while avoiding the toxic side-effects previously described for both EDTA and EDDS.


Assuntos
Quelantes/metabolismo , Ácido Edético/metabolismo , Recuperação e Remediação Ambiental/métodos , Etilenodiaminas/metabolismo , Peptídeos/metabolismo , Populus/metabolismo , Poluentes do Solo/metabolismo , Succinatos/metabolismo , Biodegradação Ambiental , Cobre/metabolismo , Populus/genética , Zinco/metabolismo
17.
Environ Sci Pollut Res Int ; 21(3): 1723-1737, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23975714

RESUMO

It was previously shown that arbuscular mycorrhizal fungi (AMF) exert a significant improvement of growth in a tolerant white poplar (Populus alba L.) clone (AL35) grown on Cu- and Zn-polluted soil via foliar alterations in the levels of defence/stress-related transcripts and molecules. However, nothing is known about the epigenetic changes which occur during tolerance acquisition in response to heavy metals (HMs) in the same mycorrhizal vs. non-mycorrhizal poplar plants. In order to analyse the epigenome in leaves of AL35 plants inoculated or not with AMF and grown in a greenhouse on multimetal polluted or unpolluted soil, the Methylation Sensitive Amplification Polymorphism (MSAP) approach was adopted to detect cytosine DNA methylation. Modest changes in cytosine methylation patterns were detected at first sampling (4 months from planting), whereas extensive alterations (hypomethylation) occurred at second sampling (after 6 months) in mycorrhizal plants grown in the presence of HMs. The sequencing of MSAP fragments led to the identification of genes belonging to several Gene Ontology categories. Seven MSAP fragments, selected on the basis of DNA methylation status in treated vs control AL35 leaves at the end of the experiment, were analysed for their transcript levels by means of qRT-PCR. Gene expression varied in treated samples relative to controls in response to HMs and/or AMF inoculation; in particular, transcripts of genes involved in RNA processing, cell wall and amino acid metabolism were upregulated in the presence of AMF with or without HMs.


Assuntos
Epigênese Genética/fisiologia , Metais Pesados/toxicidade , Populus/genética , Poluentes do Solo/toxicidade , Micorrizas/fisiologia , Folhas de Planta/metabolismo , Populus/metabolismo , Populus/microbiologia , Solo/química , Estresse Fisiológico
18.
Int J Mol Sci ; 14(8): 16207-25, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23924942

RESUMO

Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.


Assuntos
Antocianinas/metabolismo , Fragaria/metabolismo , Fragaria/microbiologia , Micorrizas/metabolismo , Pseudomonas/metabolismo , Antioxidantes/metabolismo , Fertilizantes , Frutas/metabolismo , Frutas/microbiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Metabolismo Secundário
19.
Mol Plant Microbe Interact ; 26(10): 1249-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23718124

RESUMO

Below ground and above ground plant-insect-microorganism interactions are complex and regulate most of the developmental responses of important crop plants such as tomato. We investigated the influence of root colonization by a nonmycorrhizal plant-growth-promoting fungus on direct and indirect defenses of tomato plant against aphids. The multitrophic system included the plant Solanum lycopersicum ('San Marzano nano'), the root-associated biocontrol fungus Trichoderma longibrachiatum strain MK1, the aphid Macrosiphum euphorbiae (a tomato pest), the aphid parasitoid Aphidius ervi, and the aphid predator Macrolophus pygmaeus. Laboratory bioassays were performed to assess the effect of T. longibrachiatum MK1, interacting with the tomato plant, on quantity and quality of volatile organic compounds (VOC) released by tomato plant, aphid development and reproduction, parasitoid behavior, and predator behavior and development. When compared with the uncolonized controls, plants whose roots were colonized by T. longibrachiatum MK1 showed quantitative differences in the release of specific VOC, better aphid population growth indices, a higher attractiveness toward the aphid parasitoid and the aphid predator, and a quicker development of aphid predator. These findings support the development of novel strategies of integrated control of aphid pests. The species-specific or strain-specific characteristics of these below ground-above ground interactions remain to be assessed.


Assuntos
Afídeos/fisiologia , Himenópteros/fisiologia , Controle Biológico de Vetores , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Trichoderma/fisiologia , Animais , Interações Hospedeiro-Patógeno , Solanum lycopersicum/química , Solanum lycopersicum/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Especificidade da Espécie , Compostos Orgânicos Voláteis/metabolismo
20.
PLoS One ; 7(6): e38662, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761694

RESUMO

Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein.


Assuntos
Metais Pesados/farmacologia , Micorrizas/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/efeitos dos fármacos , Cobre/farmacologia , Eletroforese em Gel Bidimensional , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Populus/efeitos dos fármacos , Populus/microbiologia , Proteoma/análise , Proteômica , Poluentes do Solo/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Simbiose , Fatores de Tempo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...