Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Vet Res ; 19(1): 268, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087358

RESUMO

BACKGROUND: Accurate measurement of disease associated with endemic bacterial agents in pig populations is challenging due to their commensal ecology, the lack of disease-specific antemortem diagnostic tests, and the polymicrobial nature of swine diagnostic cases. The main objective of this retrospective study was to estimate temporal patterns of agent detection and disease diagnosis for five endemic bacteria that can cause systemic disease in porcine tissue specimens submitted to the Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) from 2017 to 2022. The study also explored the diagnostic value of specific tissue specimens for disease diagnosis, estimated the frequency of polymicrobial diagnosis, and evaluated the association between phase of pig production and disease diagnosis. RESULTS: S. suis and G. parasuis bronchopneumonia increased on average 6 and 4.3%, while S. suis endocarditis increased by 23% per year, respectively. M. hyorhinis and A. suis associated serositis increased yearly by 4.2 and 12.8%, respectively. A significant upward trend in M. hyorhinis arthritis cases was also observed. In contrast, M. hyosynoviae arthritis cases decreased by 33% average/year. Investigation into the diagnostic value of tissues showed that lungs were the most frequently submitted sample, However, the use of lung for systemic disease diagnosis requires caution due to the commensal nature of these agents in the respiratory system, compared to systemic sites that diagnosticians typically target. This study also explored associations between phase of production and specific diseases caused by each agent, showcasing the role of S. suis arthritis in suckling pigs, meningitis in early nursery and endocarditis in growing pigs, and the role of G. parasuis, A. suis, M. hyorhinis and M. hyosynoviae disease mainly in post-weaning phases. Finally, this study highlighted the high frequency of co-detection and -disease diagnosis with other infectious etiologies, such as PRRSV and IAV, demonstrating that to minimize the health impact of these endemic bacterial agents it is imperative to establish effective viral control programs. CONCLUSIONS: Results from this retrospective study demonstrated significant increases in disease diagnosis for S. suis, G. parasuis, M. hyorhinis, and A. suis, and a significant decrease in detection and disease diagnosis of M. hyosynoviae. High frequencies of interactions between these endemic agents and with viral pathogens was also demonstrated. Consequently, improved control programs are needed to mitigate the adverse effect of these endemic bacterial agents on swine health and wellbeing. This includes improving diagnostic procedures, developing more effective vaccine products, fine-tuning antimicrobial approaches, and managing viral co-infections.


Assuntos
Actinobacillus suis , Artrite , Endocardite , Infecções por Mycoplasma , Mycoplasma hyorhinis , Mycoplasma hyosynoviae , Streptococcus suis , Doenças dos Suínos , Humanos , Suínos , Animais , Infecções por Mycoplasma/veterinária , Iowa/epidemiologia , Estudos Retrospectivos , Universidades , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Artrite/veterinária , Endocardite/veterinária
2.
Vet Sci ; 10(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37888561

RESUMO

Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest. The main viruses that affect the swine industry are described in this review, including African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine circovirus (PCV), which have been effectively detected by different molecular tools in recent times. Here, we describe the rationale of molecular techniques such as multiplex PCR, isothermal methods (LAMP, NASBA, RPA, and PSR) and novel methods such as CRISPR-Cas and microfluidics platforms. Successful molecular diagnostic developments are presented by highlighting their most important findings. Finally, we describe the barriers that hinder the large-scale development of affordable, accessible, rapid, and easy-to-use molecular diagnostic tests. The evolution of diagnostic techniques is critical to prevent the spread of viruses and the development of viral reservoirs in the swine industry that impact the possible development of future pandemics and the world economy.

3.
Animals (Basel) ; 13(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570221

RESUMO

The performance of five forecasting models was investigated for predicting nursery mortality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables, which concerned the pre-weaning phase of production and conditions at placement in growing sites. After training and testing each model's performance through cross-validation, the model with the best overall prediction results was the Support Vector Machine model in terms of Root Mean Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination (R2 = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a decrease in R2 values on the new dataset (R2 = 0.554), the model demonstrated high accuracy (77.78%) for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the capability of forecasting models to predict the nursery mortality of commercial groups of pigs using pre-weaning information and stocking condition variables collected post-placement in nursery sites.

4.
Front Vet Sci ; 10: 1200376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635762

RESUMO

Introduction: The porcine reproductive and respiratory syndrome virus (PRRSV) continues to challenge swine production in the US and most parts of the world. Effective PRRSV surveillance in swine herds can be challenging, especially because the virus can persist and sustain a very low prevalence. Although weaning-age pigs are a strategic subpopulation in the surveillance of PRRSV in breeding herds, very few sample types have been validated and characterized for surveillance of this subpopulation. The objectives of this study, therefore, were to compare PRRSV RNA detection rates in serum, oral swabs (OS), nasal swabs (NS), ear-vein blood swabs (ES), and family oral fluids (FOF) obtained from weaning-age pigs and to assess the effect of litter-level pooling on the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) detection of PRRSV RNA. Methods: Three eligible PRRSV-positive herds in the Midwestern USA were selected for this study. 666 pigs across 55 litters were sampled for serum, NS, ES, OS, and FOF. RT-qPCR tests were done on these samples individually and on the litter-level pools of the swabs. Litter-level pools of each swab sample type were made by combining equal volumes of each swab taken from the pigs within a litter. Results: Ninety-six piglets distributed across 22 litters were positive by PRRSV RT-qPCR on serum, 80 piglets distributed across 15 litters were positive on ES, 80 piglets distributed across 17 litters were positive on OS, and 72 piglets distributed across 14 litters were positive on NS. Cohen's kappa analyses showed near-perfect agreement between all paired ES, OS, NS, and serum comparisons (). The serum RT-qPCR cycle threshold values (Ct) strongly predicted PRRSV detection in swab samples. There was a ≥ 95% probability of PRRSV detection in ES-, OS-, and NS pools when the proportion of positive swab samples was ≥ 23%, ≥ 27%, and ≥ 26%, respectively. Discussion: ES, NS, and OS can be used as surveillance samples for detecting PRRSV RNA by RT-qPCR in weaning-age pigs. The minimum number of piglets to be sampled by serum, ES, OS, and NS to be 95% confident of detecting ≥ 1 infected piglet when PRRSV prevalence is ≥ 10% is 30, 36, 36, and 40, respectively.

5.
Porcine Health Manag ; 9(1): 14, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055812

RESUMO

BACKGROUND: Family oral fluids (FOF) sampling has been described as a sampling technique where a rope is exposed to sows and respective suckling litters and thereafter wrung to obtain fluids. PCR-based testing of FOF reveals presence of PRRS virus RNA only at the litter level, as opposed to conventional individual-animal-based sampling methods that demonstrate PRRSV RNA at the piglet level. The relationship between the PRRSV prevalence at the individual piglet level and at the litter level in a farrowing room has not been previously characterized. Using Monte Carlo simulations and data from a previous study, the relationship between the proportion of PRRSV-positive (viremic) pigs in the farrowing room, the proportion of litters in the farrowing room with at least one viremic pig, and the likely proportion of litters to be positive by a FOF RT-rtPCR test in a farrowing room was characterized, taking into account the spatial distribution (homogeneity) of viremic pigs within farrowing rooms. RESULTS: There was a linear relationship between piglet-level- and litter-level prevalence, where the latter was always larger than the former. When the piglet-level prevalence was 1%, 5%, 10%, 20%, and 50%, the true-litter level prevalence was 5.36%, 8.93%, 14.29%, 23.21%, and 53.57%, respectively. The corresponding apparent-litter prevalence by FOF was 2.06%, 6.48%, 11.25%, 21.60%, and 51.56%, respectively. CONCLUSION: This study provides matching prevalence estimates to help guide sample size calculations. It also provides a framework to estimate the likely proportion of viremic pigs, given the PRRSV RT-rtPCR positivity rate of FOF samples submitted from a farrowing room.

6.
Front Vet Sci ; 10: 1072682, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876004

RESUMO

Introduction: The use of serum and family oral fluids for porcine reproductive and respiratory syndrome virus (PRRSV) surveillance in weaning-age pigs has been previously characterized. Characterizing more sample types similarly offers veterinarians and producers additional validated sample options for PRRSV surveillance in this subpopulation of pigs. Oral swab sampling is relatively easy and convenient; however, there is sparse information on how it compares to the reference sample type for PRRSV surveillance under field conditions. Therefore, this study's objective was to compare the PRRSV reverse-transcription real-time polymerase chain reaction (RT-rtPCR) test outcomes of oral swabs (OS) and sera samples obtained from weaning-age pig litters. Method: At an eligible breeding herd, six hundred twenty-three weaning-age piglets from 51 litters were each sampled for serum and OS and tested for PRRSV RNA by RT-rtPCR. Results and Discussion: PRRSV RT-rtPCR positivity rate was higher in serum samples (24 of 51 litters, 83 of 623 pigs, with a mean cycle threshold (Ct) value of RT-rtPCR-positive samples per litter ranging from 18.9 to 32.0) compared to OS samples (15 of 51 litters, 33 of 623 pigs, with a mean Ct of RT-rtPCR positive samples per litter ranging from 28.2 to 36.9); this highlights the importance of interpreting negative RT-rtPCR results from OS samples with caution. Every litter with a positive PRRSV RT-rtPCR OS had at least one viremic piglet, highlighting the authenticity of positive PRRSV RT-rtPCR tests using OS; in other words, there was no evidence of environmental PRRSV RNA being detected in OS. Cohen's kappa analysis (Ck = 0.638) indicated a substantial agreement between both sample types for identifying the true PRRSV status of weaning-age pigs.

7.
Prev Vet Med ; 213: 105883, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36867926

RESUMO

Sow mortality has significantly increased throughout the world over the past several years, and it is a growing concern to the global swine industry. Sow mortality increases economic losses, including higher replacement rates, affects employees' morale, and raises concerns about animal well-being and sustainability. This study aimed to assess herd-level risk factors associated with sow mortality in a large swine production system in the Midwestern United States. This retrospective observational study used available production, health, nutritional, and management information between July 2019 and December 2021. A Poisson mixed regression model was used to identify the risk factors and to build a multivariate model using the weekly mortality rate per 1000 sows as the outcome. Different models were used to identify the risk factors according to this study's main reasons for sow mortality (total death, sudden death, lameness, and prolapse). The main reported causes of sow mortality were sudden death (31.22 %), lameness (28.78 %), prolapse (28.02 %), and other causes (11.99 %). The median (25th-75th percentile) distribution of the crude sow mortality rate/1000 sows was 3.37 (2.19 - 4.16). Breeding herds classified as epidemic for porcine reproductive and respiratory syndrome virus (PRRSV) were associated with higher total death, sudden death, and lameness death. Open pen gestation was associated with a higher total death and lameness compared with stalls. Pulses of feed medication was associated with lower sow mortality rate for all outcomes. Farms not performing bump feeding were associated with higher sow mortality due to lameness and prolapses, while Senecavirus A (SVA)-positive herds were associated with a higher mortality rate for total deaths and deaths due to lameness. Disease interactions (herds Mycoplasma hyopneumoniae positive and epidemic for PRRSV; SVA positive herds and epidemic for PRRSV) were associated with higher mortality rates compared to farms with single disease status. This study identified and measured the major risk factors associated with total sow mortality rate, sudden deaths, lameness deaths, and prolapse deaths in breeding herds under field conditions.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Feminino , Coxeadura Animal , Meio-Oeste dos Estados Unidos/epidemiologia , Fatores de Risco , Suínos , Doenças dos Suínos/epidemiologia
8.
Front Vet Sci ; 10: 1089132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816189

RESUMO

Influenza A virus (IAV) is an endemic respiratory pathogen affecting swine worldwide and is a public health concern as a zoonotic pathogen. Veterinarians may respond to IAV infection in swine with varied approaches depending on their perception of its economic impact on human and animal health. This study considered three primary veterinary practice categories: swine exclusive veterinary practitioner, large animal practitioner, which corresponds to veterinarians that work predominantly with food animals including but not exclusively porcine, and mixed animal practitioner, which corresponds to veterinarians working with companion and food animals. This survey aimed to assess U.S. veterinarian perceptions, biosecurity practices, and control methods for IAV in swine. In this study, 54.5% (188/345) of the veterinarians that were targeted responded to all portions of the survey. The study results presented different perceptions regarding IAV among veterinarians in different types of veterinary practices and the current IAV mitigation practices implemented in swine farms based on strategic decisions. Collectively, this study also revealed the veterinarians' perceptions that IAV as a health problem in swine is increasing, IAV has a moderate economic impact, and there is a high level of concern regarding IAV circulating in swine. These findings highlight the need for IAV surveillance data, improved vaccine strategies, as well as important opportunities regarding methods of control and biosecurity. Additionally, results of this survey suggest biosecurity practices associated with the veterinarian's swine operations and prevention of zoonotic diseases can be strengthened through annual IAV vaccination of humans and support of sick leave policies for farm workers.

9.
Front Vet Sci ; 10: 1301392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274655

RESUMO

Aggregated diagnostic data collected over time from swine production systems is an important data source to investigate swine productivity and health, especially when combined with records concerning the pre-weaning and post-weaning phases of production. The combination of multiple data streams collected over the lifetime of the pigs is the essence of the whole-herd epidemiological investigation. This approach is particularly valuable for investigating the multifaceted and ever-changing factors contributing to wean-to-finish (W2F) swine mortality. The objective of this study was to use a retrospective dataset ("master table") containing information on 1,742 groups of pigs marketed over time to identify the major risk factors associated with W2F mortality. The master table was built by combining historical breed-to-market performance and health data with disease diagnostic records (Dx Codes) from marketed groups of growing pigs. After building the master table, univariate analyses were conducted to screen for risk factors to be included in the initial multivariable model. After a stepwise backward model selection approach, 5 variables and 2 interactions remained in the final model. Notably, the diagnosis variable significantly associated with W2F mortality was porcine reproductive and respiratory syndrome virus (PRRSV). Closeouts with clinical signs suggestive of Salmonella spp. or Escherichia coli infection were also associated with higher W2F mortality. Source sow farm factors that remained significantly associated with W2F mortality were the sow farm PRRS status, average weaning age, and the average pre-weaning mortality. After testing for the possible interactions in the final model, two interactions were significantly associated with wean-to-finish pig mortality: (1) sow farm PRRS status and a laboratory diagnosis of PRRSV and (2) average weaning age and a laboratory diagnosis of PRRS. Closeouts originating from PRRS epidemic or PRRS negative sow farms, when diagnosed with PRRS in the growing phase, had the highest W2F mortality rates. Likewise, PRRS diagnosis in the growing phase was an important factor in mortality, regardless of the average weaning age of the closeouts. Overall, this study demonstrated the utility of a whole-herd approach when analyzing diagnostic information along with breeding-to-market productivity and health information, to measure the major risk factors associated with W2F mortality in specified time frames and pig populations.

10.
Front Vet Sci ; 9: 993442, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213411

RESUMO

The control of porcine reproductive and respiratory syndrome virus (PRRSV) hinges on monitoring and surveillance. The objective of this study was to assess PRRSV RNA detection by RT-PCR in tongue tips from dead suckling piglets compared to serum samples, processing fluids, and family oral fluids. Tongue tips and serum samples were collected from three PRRSV-positive breeding herd farms (farms A, B, and C) of three different age groups: newborns (<24 h), processing (2 to 7 days of age), and weaning (18 to 22 days of age). Additionally, processing fluids and family oral fluids were collected from 2-7 days of age and weaning age, respectively. In farms A and B, PRRSV RNA was detected in tongue tips from all age groups (100 and 95%, respectively). In addition, PRRSV RNA was detected in pooled serum samples (42 and 27%), processing fluids (100 and 50%), and family oral fluids (11 and 22%). Interestingly, the average Ct value from tongue tips was numerically lower than the average Ct value from serum samples in the newborn age. In farm C, PRRSV RNA was only detected in serum samples (60%) and family oral fluids (43%), both from the weaning age. Further, no PRRSV RNA was detected in tongue tips when pooled serum samples from the same age group tested PRRSV RNA-negative. Taken together, these results demonstrate the potential value of tongue tips for PRRSV monitoring and surveillance.

11.
Prev Vet Med ; 206: 105701, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816833

RESUMO

Family oral fluids (FOFs) are an aggregate sample type shown to be a cost-efficient and convenient option for determining the porcine reproductive and respiratory syndrome virus (PRRSV) status of weaning age pigs. This study investigates the effect of pooling PRRSV-positive FOF samples with PRRSV-negative FOF samples at different levels (1/3, 1/5, 1/10, 1/20) on the probability of PRRSV RNA detection by reverse-transcription real-time polymerase chain reaction (RT-rtPCR). Mathematical models were built to assess how much the probability of RT-rtPCR PRRSV detection changed with increasing proportion of PRRSV-positive samples present within pools and how partially sampling a farrowing room influenced the probability of RT-rtPCR detection of PRRSV RNA in pooled samples at different prevalence scenarios. A general example of a guideline for FOF-based sampling under different prevalence scenarios to detect PRRSV RNA by RT-rtPCR with at least 95 % certainty is presented. At the sample level, the probability of detecting PRRSV RNA by RT-rtPCR decreased from 100 % to 87 %, 68 %, and 26 % when diluting up to 1/20 for PRRSV positive FOF having an initial Cycle threshold (Ct) below 34, between 34 and 36, or above 36, respectively. When PRRSV prevalence is near-zero (1 or 2 litters positive out of 56), the most cost-efficient farrowing room sampling strategy to detect PRRSV RNA with at least 95 % certainty was pooling FOF samples up to 1/10; at higher prevalence (≥ 3 of 56 litters positive), the most cost-efficient strategy was submitting samples in pools of 20. Subsampling a farrowing room for FOF pools was also demonstrated to be a valuable cost-saving strategy. Overall, based on the conditions of this study, pooling FOFs up to 1/20 is a valid option in situations of cost constraint and regardless of pooling level chosen, capturing as many litters as possible improves the probability of PRRSV detection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Anticorpos Antivirais/análise , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Probabilidade , RNA , Saliva/química , Suínos
12.
Prev Vet Med ; 204: 105669, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35594607

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a significant economic impact on swine production. It has been demonstrated that PRRS modified-live virus (MLV) vaccination of pigs, with one full dose, significantly reduces clinical consequences of wild-type PRRSV infection compared to non-vaccinates. However, there is limited information about the effect that two doses of PRRSV MLV vaccine have on the performance of growing pigs, compared to vaccination with a single dose. This study was conducted with the objectives to compare (a) the wild-type PRRSV detection in oral fluids over time, (b) key closeout productivity indicators, and (c) economic performance between lots of growing pigs vaccinated with two doses of Ingelvac PRRS® MLV vaccine and lots vaccinated with a single dose of the same vaccine. This randomized field trial included 15 lots of growing pigs from PRRSV positive-unstable sow farms and 66 lots from PRRSV positive-stable sow farms, according to the American association of swine veterinarians' terminology. All pig lots received the first vaccination either around processing or weaning age. Lots allocated in the two doses group received the second vaccination three to four weeks after the first vaccination. The pig lots were monitored for PRRSV detection over time. Six oral fluids samples were collected in three weeks intervals and were tested for wild-type PRRSV-2 RNA by RT-qPCR and open reading frame 5 (ORF)- 5 sequencing. Regression models were used to compare wild-type PRRSV detection dynamics on oral fluids samples and to compare key closeout performance indicators between one dose group and two doses group. Additionally, a benefit-cost ratio analysis compared economic performance between one dose group and two doses group. The proportion of wild-type PRRSV detection on oral fluids samples and the log counts of viral RNA per ml of oral fluids from the two doses group was lower than the one dose group on lots originated from PRRSV positive-stable sow farms, with a risk ratio of 1.24 and a rate ratio of 1.17, respectively. The two doses group had a significantly lower mortality rate than the one dose group, with a rate ratio of 1.21. The effect size increased on lots originated from PRRSV positive-unstable sow farms, and on lots with higher frequency and diversity of wild-type PRRSV detection during the growth phase. No differences in growth performance were detected between two doses group and one dose group. The second MLV vaccination dose had a benefit-cost ratio of 1.83. For lots originated from PRRSV positive-unstable farms, the benefit-cost ratio was 4.45, and for lots originated from PRRSV positive-stable farms, the benefit-cost ratio was 0.45. Under study conditions, vaccinating growing pig lots with two doses of PRRS MLV vaccine was a useful strategy to immunize growing pigs against PRRSV, lowering the wild-type PRRSV detection, lowering mortality rate, and increasing profitability, compared to lots of growing pigs that received a single dose of the same vaccine.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Antivirais , Feminino , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Suínos , Vacinação/veterinária , Vacinas Atenuadas
13.
Transbound Emerg Dis ; 69(5): e2214-e2229, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35416426

RESUMO

The open reading frames (ORF)5 represents approximately 4% of the porcine reproductive and respiratory syndrome virus (PRRSV)-2 genome (whole-PRRSV) and is often determined by the Sanger technique, which rarely detects >1 PRRSV strain if present in the sample. Next-generation sequencing (NGS) may provide a more appropriate method of detecting multiple PRRSV strains in one sample. This work assessed the effect of PRRSV genetic variability and recombination events, using NGS, on the time-to-low prevalence (TTLP) and total losses in breeding herds (n 20) that detected a PRRSV outbreak and adopted measures to eliminate PRRSV. Serum, lung or live virus inoculation material collected within 3-weeks of outbreak, and subsequently, processing fluids (PFs) were tested for PRRSV by RT-qPCR and NGS. Recovered whole-PRRSV or partial sequences were used to characterize within and between herd PRRSV genetic variability. Whole-PRRSV was recovered in five out of six (83.3%) lung, 16 out of 22 (72.73%) serum and in five out of 95 (5.26%) PF. Whole-PRRSV recovered from serum or lung were used as farm referent strains in 16 out of 20 (80%) farms. In four farms, only partial genome sequences were recovered and used as farm referent strains. At least two wild-type PRRSV strains (wt-PRRSV) were circulating simultaneously in 18 out of 20 (90%) and at least one vaccine-like strain co-circulating in eight out of 20 (40%) farms. PRRSV recombination events were detected in 12 farms (59%), been 10 out of 12 between wt-PRRSV and two out of 12 between wt-PRRSV and vaccine-like strains. Farms having ≥3 strains had a 12-week increase TTLP versus herds ≤2 strains detected. Farms with ≤2 strains (n 10) had 1837 and farms with no recombination events detected (n 8) had 1827 fewer piglet losses per 1000 sows versus farms with ≥3 PRRSV strains (n 8) or detected recombination (n 10), respectively. NGS outcomes and novel visualization methods provided more thorough insight into PRRSV dynamics, genetic variability, detection of multiple strains co-circulating in breeding herds and helped establish practical guidelines for using PRRSV NGS outputs.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Suínos
14.
Transbound Emerg Dis ; 69(4): e916-e930, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34719136

RESUMO

Effective biosecurity practices in swine production are key in preventing the introduction and dissemination of infectious pathogens. Ideally, on-farm biosecurity practices should be chosen by their impact on bio-containment and bio-exclusion; however, quantitative supporting evidence is often unavailable. Therefore, the development of methodologies capable of quantifying and ranking biosecurity practices according to their efficacy in reducing disease risk has the potential to facilitate better-informed choices of biosecurity practices. Using survey data on biosecurity practices, farm demographics, and previous outbreaks from 139 herds, a set of machine learning algorithms were trained to classify farms by porcine reproductive and respiratory syndrome virus status, depending on their biosecurity practices and farm demographics, to produce a predicted outbreak risk. A novel interpretable machine learning toolkit, MrIML-biosecurity, was developed to benchmark farms and production systems by predicted risk and quantify the impact of biosecurity practices on disease risk at individual farms. By quantifying the variable impact on predicted risk, 50% of 42 variables were associated with fomite spread while 31% were associated with local transmission. Results from machine learning interpretations identified similar results, finding substantial contribution to predicted outbreak risk from biosecurity practices relating to the turnover and number of employees, the surrounding density of swine premises and pigs, the sharing of haul trailers, distance from the public road and farm production type. In addition, the development of individualized biosecurity assessments provides the opportunity to better guide biosecurity implementation on a case-by-case basis. Finally, the flexibility of the MrIML-biosecurity toolkit gives it the potential to be applied to wider areas of biosecurity benchmarking, to address biosecurity weaknesses in other livestock systems and industry-relevant diseases.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Criação de Animais Domésticos/métodos , Animais , Biosseguridade , Suscetibilidade a Doenças/veterinária , Fazendas , Humanos , Aprendizado de Máquina , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Suínos
15.
Transbound Emerg Dis ; 69(3): 974-985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33900029

RESUMO

Porcine astroviruses (PoAstVs) have been reported globally and are divided into at least five distinct lineages (PoAstV1-PoAsV5). The primary objective of this review was to summarize the scientific literature about the frequency of detection, associated clinical presentations and type of samples and diagnostic tools used for the detection of porcine astroviruses. The secondary objective was to summarize the body of knowledge about the causal role in disease of PoAstVs using the Bradford Hill framework. A search was conducted using Centre for Biosciences and Agriculture International (CABI), MEDLINE, American Association of Swine Veterinarians (AASV) Swine Information Library (SIL) abstracts, swine conferences including American College of Veterinary Pathologists (ACVP) and American Association of Veterinary Laboratory Diagnosticians (AAVLD). From 168 studies identified by the search, 29 studies were eligible. Results indicated that 69% (20/29) of the literature on PoAstVs have been published between 2011 and 2018. Of 29 papers, 52% were detection studies (15 of 29) and 48% (14 of 29) were case-control studies. Seventy-two per cent (21 of 29) reported differential diagnosis and 10% (3 of 29) reported histologic lesions, out of which 67% (2 of 3) associated the detection of PoAstV3 with development of polioencephalomyelitis. PCR-based assays were the most common diagnostic tools.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Doenças dos Suínos , Animais , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/veterinária , Estudos de Casos e Controles , Humanos , Filogenia , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/epidemiologia
16.
Prev Vet Med ; 198: 105545, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801793

RESUMO

Swine wean-to-finish (W2F) mortality is a multifactorial, dynamic process and a key performance indicator of commercial swine production. Although swine producers typically capture the relevant data, analysis of W2F mortality risk factors is often hindered by the fact that, even if data is available, they are typically in different formats, non-uniform, and dispersed among multiple unconnected databases. In this study, an automated framework was created to link multiple data streams to specific cohorts of market animals, including sow farm productivity parameters, sow farm and growing pig health factors, facilities, management factors, and closeout data from a Midwestern USA production system. The final dataset (master-table) contained breeding-to-market data for 1,316 cohorts of pigs marketed between July 2018 and June 2019. Following integration into a master-table, continuous explanatory variables were categorized into quartiles averages, and the W2F mortality was log-transformed, reporting geometric mean mortality of 8.69 % for the study population. Further, univariate analyses were performed to identify individual variables associated with W2F mortality (p < 0.10) for further inclusion in a multivariable model, where model selection was applied. The final multivariable model consisted of 13 risk factors and accounted for 68.2 % (R2) of the variability of the W2F mortality, demonstrating that sow farm health and performance are closely linked to downstream W2F mortality. Higher sow farm productivity was associated with lower subsequent W2F mortality and, conversely, lower sow farm productivity with higher W2F mortality e.g., groups weaned in the highest quartiles for pre-weaning mortality and abortion rate had 13.5 %, and 12.5 %, respectively, which was statistically lower than the lowest quartiles for the same variables (10.5 %, and 10.6 %). Moreover, better sow farm health status was also associated with lower subsequent W2F mortality. A significant difference was detected in W2F mortality between epidemic versus negative groups for porcine reproductive and respiratory syndrome virus (15.4 % vs 8.7 %), and Mycoplasma hyopneumoniae epidemic versus negative groups (13.7 % vs 9.9 %). Overall, this study demonstrated the application of a whole-herd analysis by aggregating information of the pre-weaning phase with the post-weaning phase (breeding-to-market) to identify and measure the major risk factors of W2F mortality.


Assuntos
Mortalidade , Mycoplasma hyopneumoniae , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Aborto Animal , Animais , Feminino , Meio-Oeste dos Estados Unidos , Gravidez , Fatores de Risco , Desmame
17.
Genet Sel Evol ; 53(1): 91, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34875996

RESUMO

BACKGROUND: The possibility of using antibody response (S/P ratio) to PRRSV vaccination measured in crossbred commercial gilts as a genetic indicator for reproductive performance in vaccinated crossbred sows has motivated further studies of the genomic basis of this trait. In this study, we investigated the association of haplotypes and runs of homozygosity (ROH) and heterozygosity (ROHet) with S/P ratio and their impact on reproductive performance. RESULTS: There was no association (P-value ≥ 0.18) of S/P ratio with the percentage of ROH or ROHet, or with the percentage of heterozygosity across the whole genome or in the major histocompatibility complex (MHC) region. However, specific ROH and ROHet regions were significantly associated (P-value ≤ 0.01) with S/P ratio on chromosomes 1, 4, 5, 7, 10, 11, 13, and 17 but not (P-value ≥ 0.10) with reproductive performance. With the haplotype-based genome-wide association study (GWAS), additional genomic regions associated with S/P ratio were identified on chromosomes 4, 7, and 9. These regions harbor immune-related genes, such as SLA-DOB, TAP2, TAPBP, TMIGD3, and ADORA. Four haplotypes at the identified region on chromosome 7 were also associated with multiple reproductive traits. A haplotype significantly associated with S/P ratio that is located in the MHC region may be in stronger linkage disequilibrium (LD) with the quantitative trait loci (QTL) than the previously identified single nucleotide polymorphism (SNP) (H3GA0020505) given the larger estimate of genetic variance explained by the haplotype than by the SNP. CONCLUSIONS: Specific ROH and ROHet regions were significantly associated with S/P ratio. The haplotype-based GWAS identified novel QTL for S/P ratio on chromosomes 4, 7, and 9 and confirmed the presence of at least one QTL in the MHC region. The chromosome 7 region was also associated with reproductive performance. These results narrow the search for causal genes in this region and suggest SLA-DOB and TAP2 as potential candidate genes associated with S/P ratio on chromosome 7. These results provide additional opportunities for marker-assisted selection and genomic selection for S/P ratio as genetic indicator for litter size in commercial pig populations.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Formação de Anticorpos , Feminino , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Locos de Características Quantitativas , Sus scrofa/genética , Suínos/genética , Vacinação
18.
Front Vet Sci ; 8: 769312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805344

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) became pandemic in the 1980's and today remains one of the most significant pathogens of the global swine industry. At the herd level, control of PRRSV is complicated by its extreme genetic diversity and its ability to persist in pigs, despite an active immune response. Ultimately, PRRSV control or elimination requires the coordination and active cooperation of producers and veterinarians at the regional level. Early voluntary PRRSV regional control programs focused on routine diagnostic testing and voluntary data-sharing regarding the PRRSV status of participants' herds, but no pre-defined action plans or decision trees were developed to secure project successes (or recover from failures). Given that control of PRRSV is paramount to producer profitability, we propose a coordinated approach for detecting, controlling, and ultimately eliminating wild-type PRRSV from herds participating in regional projects. Fundamental to project success is real-time, multi-platform communication of all data, information, and events that concern the regional project and project participants. New to this approach is the concept of agreed-upon action plans to be implemented by project participants in response to specific events or situations. The simultaneous and coordinated implementation of these strategies allows for early detection of wild-type PRRSV virus introductions and rapid intervention based on agreed-upon response plans. An example is given of a project in progress in the Midwest USA.

19.
Transbound Emerg Dis ; 68(6): 3230-3235, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34553831

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is an important economic swine disease. The usage of PRRS-modified live vaccines (MLV) is the predominant breeding herd immunologic solution used in the United States to minimize the economic losses associated with wild-type PRRS infection. Most of the current information on the effects of contemporary PRRS MLV vaccination on breeding herd performance under field conditions comes from herds with previous PRRS virus (PRRSV) exposure. Hence, there is little information on key performance indicators (KPI) changes after the exposure to a PRRS MLV in PRRSV-naïve breeding herds. The main objective of this longitudinal observational study was to describe selected KPI changes in a naïve breeding herd after PRRS MLV exposure. The secondary objective was to describe the pattern of detection of PRRSV RNA by the quantitative reverse transcriptase-polymerase chain reaction in processing fluid samples. There were transient increases for mummies during weeks 4-23 (+0.86%); increased pre-weaning mortality on weeks 3-5 (+3.76%); a decrease in live born on weeks 4-5 (-0.46) leading to a decreased pig weaned/litter on weeks 5-10 (-0.69) and increased repeated services on weeks 3-23 (+5.53%). Transient changes observed after PRRS MLV exposures did not move total pigs weaned to outside the control intervals. Starting on week 83 and for 53 consecutive weeks, there was no PRRSV detection in processing fluids, even though two whole-herd MLV exposures occurred within that period.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Suínos , Vacinação/veterinária , Vacinas Atenuadas
20.
Vet Microbiol ; 261: 109190, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411996

RESUMO

There has been a tremendous increase in recent years of population-based diagnostic monitoring and surveillance strategies in swine populations. One example is the use of processing fluids (PF) to screen breeding herds for porcine reproductive and respiratory syndrome virus (PRRSV) activity. An important question from practitioners using such methods is on how intensively can the sample be pooled. More specifically, processing fluids of how many litters can be pooled into a single sample for diagnostic testing to preserve a high probability of PRRSV RNA detection at low prevalence situations? The objective of this study was to model the effect of pooling PF samples on the probability of PRRSV RNA detection. For this study, a PRRSV-positive PF field sample with a RT-rtPCR quantification cycle (Cq) value of 28 was selected to represent a litter of 11 pigs with a single viremic piglet. PF samples from a PRRSV-naïve herd were used to perform 6 replications of 8 two-fold serial dilutions of the PRRSV-positive sample, thus modeling the pooling effect (dilution). Each two-fold dilution represented an increase in the number of PRRS-negative pigs in the sample by a factor of 2. Samples were tested for PRRSV RNA by RT-rtPCR and the data was analyzed using linear and probit regression models. There was an average increment of 1.37 points in Ct for each two-fold dilution. The estimated probability of testing positive on RT-rtPCR was 43 %, 80 %, and 95 % when there was a single PRRSv-positive piglet among 784, 492, and 323 PRRSv-negative piglets contributing to the sample respectively. Results from this study support the practice of collecting and aggregating PF samples from multiple litters for PRRSV RNA testing.


Assuntos
Criação de Animais Domésticos/métodos , Síndrome Respiratória e Reprodutiva Suína/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medicina Veterinária/métodos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Probabilidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...