Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 61(1): 37-46, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22615186

RESUMO

Microglia sense intact or lesioned cells of the central nervous system (CNS) and respond accordingly. To fulfill this task, microglia express a whole set of recognition receptors. Fc receptors and DAP12 (TYROBP)-associated receptors such as microglial triggering receptor expressed on myeloid cells-2 (TREM2) and the complement receptor-3 (CR3, CD11b/CD18) trigger the immunoreceptor tyrosine-based activation motif (ITAM)-signaling cascade, resulting in microglial activation, migration, and phagocytosis. Those receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif (ITIM)-signaling receptors, such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs recognize the sialic acid cap of healthy neurons thus leading to an ITIM signaling that turns down microglial immune responses and phagocytosis. In contrast, desialylated neuronal processes are phagocytosed by microglial CR3 signaling via an adaptor protein containing an ITAM. Thus, the aberrant terminal glycosylation of neuronal surface glycoproteins and glycolipids could serve as a flag for microglia, which display a multitude of diverse carbohydrate-binding receptors that monitor the neuronal physical condition and respond via their ITIM- or ITAM-signaling cascade accordingly.


Assuntos
Glicocálix/metabolismo , Motivo de Ativação do Imunorreceptor Baseado em Tirosina/fisiologia , Motivo de Inibição do Imunorreceptor Baseado em Tirosina/fisiologia , Microglia/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Animais , Glicocálix/química , Glicocálix/fisiologia , Humanos , Microglia/química , Microglia/fisiologia , Neurônios/química , Neurônios/fisiologia
2.
Brain ; 135(Pt 5): 1586-605, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22447120

RESUMO

During central nervous system autoimmunity, interactions between infiltrating immune cells and brain-resident cells are critical for disease progression and ultimately organ damage. Here, we demonstrate that local cross-talk between invading autoreactive T cells and auto-antigen-presenting myeloid cells within the central nervous system results in myeloid cell activation, which is crucial for disease progression during experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. This T cell-mediated licensing of central nervous system myeloid cells triggered astrocytic CCL2-release and promoted recruitment of inflammatory CCR2(+)-monocytes, which are the main effectors of disease progression. By employing a cell-specific knockout model, we identify the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in myeloid cells as key regulator of their disease-determining interactions with autoreactive T cells and brain-resident cells, respectively. LysM-PPARγ(KO) mice exhibited disease exacerbation during the effector phase of experimental autoimmune encephalomyelitis characterized by enhanced activation of central nervous system myeloid cells accompanied by pronounced local CCL2 production and inflammatory monocyte invasion, which finally resulted in increased demyelination and neuronal damage. Pharmacological PPARγ activation decreased antigen-specific T cell-mediated licensing of central nervous system myeloid cells, reduced myeloid cell-mediated neurotoxicity and hence dampened central nervous system autoimmunity. Importantly, human monocytes derived from patients with multiple sclerosis clearly responded to PPARγ-mediated control of proinflammatory activation and production of neurotoxic mediators. Furthermore, PPARγ in human monocytes restricted their capacity to activate human astrocytes leading to dampened astrocytic CCL2 production. Together, interference with the disease-promoting cross-talk between central nervous system myeloid cells, autoreactive T cells and brain-resident cells represents a novel therapeutic approach that limits disease progression and lesion development during ongoing central nervous system autoimmunity.


Assuntos
Autoimunidade/fisiologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/patologia , Células Mieloides/fisiologia , PPAR gama/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Cerebelo/citologia , Técnicas de Cocultura , Citocinas/metabolismo , Modelos Animais de Doenças , Embrião de Mamíferos , Encefalomielite Autoimune Experimental/imunologia , Citometria de Fluxo , Adjuvante de Freund/efeitos adversos , Técnicas de Silenciamento de Genes , Glicoproteínas/administração & dosagem , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Humanos , Hipoglicemiantes/administração & dosagem , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/fisiologia , Glicoproteína Mielina-Oligodendrócito , Células Mieloides/imunologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , PPAR gama/deficiência , Fragmentos de Peptídeos/administração & dosagem , Pioglitazona , RNA Interferente Pequeno/metabolismo , Receptores CCR2/metabolismo , Linfócitos T , Tiazolidinedionas/administração & dosagem
3.
Cell Tissue Res ; 349(1): 215-27, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22331363

RESUMO

Microglia are the resident immune cells of the central nervous system (CNS) and perform typical scavenging and innate immune functions. Their capacity to eliminate extracellular aggregates and apoptotic neural material without inflammation is crucial for brain tissue homeostasis and repair. To fulfill these tasks, microglia express a whole set of recognition receptors including toll-like (TLRs), carbohydrate-binding, Fc, complement and cytokine receptors. Receptors recognizing carbohydrate structures are strongly involved in microglial repair function. Carbohydrate-binding receptors can be divided into two major subgroups: the sulfated glycosaminoglycan (SGAG)-binding receptors and the lectins (Siglecs, galectins, selectins). SGAG-binding receptors recognize anionic structural motifs within extended SGAG chains. Siglecs bind to the sialic acid cap of the intact glycocalyx. Other lectin family members such as galectins recognize lactosamine units typically exposed after alteration of the glycocalyx. Dependent on the type of microglial carbohydrate-binding receptors that are stimulated, either a pro-inflammatory cytotoxic or an anti-inflammatory repair-promoting response is evoked. The carbohydrate-binding receptors are also crucial in regulating microglial function such as phagocytosis during neurodegenerative or neuroinflammatory processes. A balance between microglial carbohydrate-binding receptor signaling via an immunoreceptor tyrosine-based activation motif or an immunoreceptor tyrosine-based inhibitory motif is required to polarize microglial cells appropriately so that they create a microenvironment permissive for neural regenerative events.


Assuntos
Metabolismo dos Carboidratos , Microglia/metabolismo , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Receptores de Superfície Celular/metabolismo , Cicatrização , Animais , Humanos , Ligação Proteica , Receptores de Superfície Celular/química
4.
J Neurosci ; 32(3): 946-52, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22262892

RESUMO

Microglial cells are professional phagocytes of the CNS responsible for clearance of unwanted structures. Neuronal processes are marked by complement C1 before they are removed in development or during disease processes. Target molecules involved in C1 binding and mechanisms of clearance are still unclear. Here we show that the terminal sugar residue sialic acid of the mouse neuronal glycocalyx determines complement C1 binding and microglial-mediated clearance function. Several early components of the classical complement cascade including C1q, C1r, C1s, and C3 were produced by cultured mouse microglia. The opsonin C1q was binding to neurites after enzymatic removal of sialic acid residues from the neuronal glycocalyx. Desialylated neurites, but not neurites with intact sialic acid caps, were cleared and taken up by cocultured microglial cells. The removal of the desialylated neurites was mediated via the complement receptor-3 (CR3; CD11b/CD18). Data demonstrate that mouse microglial cells via CR3 recognize and remove neuronal structures with an altered neuronal glycocalyx lacking terminal sialic acid.


Assuntos
Complemento C1q/metabolismo , Glicocálix/metabolismo , Microglia/metabolismo , Neurônios/citologia , Receptores de Complemento/metabolismo , Ácidos Siálicos/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Encéfalo/citologia , Antígeno CD11b/metabolismo , Células Cultivadas , Técnicas de Cocultura , Complemento C1q/farmacologia , Complemento C3/genética , Complemento C3/metabolismo , Citocinas/farmacologia , Embrião de Mamíferos , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neuraminidase/farmacologia , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores de Complemento/genética , Transfecção , Tubulina (Proteína)/metabolismo
5.
Hum Mol Genet ; 20(6): 1197-211, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21212098

RESUMO

We recently described mitochondrial pathology in neurons of transgenic mice with genes associated with Parkinson's disease (PD). Now we describe severe mitochondrial damage in glial cells of the mesencephalon in mice carrying a targeted deletion of parkin (PaKO) or overexpressing doubly mutated human alpha-synuclein (asyn). The number of mitochondria with altered morphology in glial cells is cell type-dependent, but always higher than in neurons. Interestingly, mitochondrial damage also occurs in mesencephalic glia of mice carrying mutated asyn controlled by the tyrosine hydroxylase promoter. Such mice do not show glial expression of the transgene, but show expression in neighboring neurons. However, we found strong overexpression of endogenous asyn in mesencephalic astrocytes from these mice. Cortical astrocytes neither display enhanced asyn expression nor mitochondrial damage. Cultivated mesencephalic astrocytes from newborn transgenic mice display various functional defects along with the morphological damage of mitochondria. First, the mitochondrial Ca(2+)-storage capacity is reduced in asyn transgenic mesencephalic astrocytes, but not in astrocytes from PaKO. Second, the expression of the mitochondrial protein PTEN-induced putative kinase is constitutively increased in asyn transgenic mice, while in PaKO it reacts to oxidative stress by overexpressing this protein along with other mitochondria-related proteins. Third, the neurotrophic effects exerted by control astrocytes, stimulating cortical neurons from healthy mice to develop longer processes and larger neuronal areas, are lacking in co-cultures with transgenic mesencephalic astrocytes. In summary, glial mitochondria from transgenic mice display morphological and functional alterations. Such transgenic astrocytes fail to influence neuronal differentiation, reflecting an important role that glia may play in PD pathogenesis.


Assuntos
Modelos Animais de Doenças , Camundongos , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/ultraestrutura , Cálcio/metabolismo , Células Cultivadas , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neuroglia/patologia , Neuroglia/ultraestrutura , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
6.
Int J Alzheimers Dis ; 20102010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20721346

RESUMO

Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein-beta1, and complement receptor-3 (CD11b/CD18) signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM-) signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs). Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

7.
Nat Protoc ; 5(9): 1481-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20725065

RESUMO

Microglia, the resident immune cells of the brain, are difficult to obtain in high numbers and purity using currently available methods; to date, microglia for experimental research are mainly isolated from the brain or from mixed glial cultures. In this paper, we describe a basic protocol for the in vitro differentiation of mouse embryonic stem (ES) cells into microglial precursor cells. Microglia are obtained by a protocol consisting of five stages: (i) cultivation of ES cells, (ii) formation and differentiation of embryoid bodies, (iii) differentiation into neuroectodermal lineage and isolation of myeloid precursor cells, (iv) differentiation into microglial precursor cells and (v) cultivation of ES cell-derived microglial precursors (ESdMs). The protocol can be completed in 60 d and results in stably proliferating ESdM lines, which show inducible transcription of inflammatory genes and cell marker expression comparable with primary microglia. Furthermore, ESdMs are capable of chemokine-directed migration and phagocytosis, which are major functional features of microglia.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Microglia/citologia , Animais , Meios de Cultura , Camundongos , Camundongos Endogâmicos C57BL
8.
Hum Mol Genet ; 16(20): 2377-93, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17412759

RESUMO

Mutations in the gene encoding alpha-synuclein (asyn) causes autosomal-dominant, in the parkin gene autosomal-recessive forms of Parkinson's disease (PD). The pathophysiology of PD is poorly understood, even though published evidence suggests a role for mitochondria in the pathogenesis. To gain insight into the influence of asyn and parkin on mitochondrial integrity and function, we have generated several mono-mutant mouse lines expressing doubly mutated human asyn (hm(2)asyn) under the control of two different promoters, or a targeted deletion of Parkin (Parkin-Exon3-knockout). Both mouse lines were crossed to generate the double-mutant. Here we compare the ultrastructure and functional properties of mitochondria in the substantia nigra (SN), the striatum, the cerebral cortex (Cx) and skeletal muscle of young (2-3 months) and aged (12-14 months) mono- and double-mutants mice. We observed severe genotype-, age- and region-dependent morphological alterations of mitochondria in neuronal somata. The number of structurally altered mitochondria was significantly increased in the SN of both double-mutants and in the Cx of one mono- and one double-mutant line. These alterations coincided with a reduced complex I capacity in the SN, but were neither accompanied by alterations in the number or the size of the mitochondria nor by leakage of cytochrome c, Smac/DIABLO or Omi/HtrA2. None of the transgenic animals developed any gross histopathological abnormalities or overt motor disabilities. Together our results provide compelling evidence that (i) both, asyn and parkin are relevant for mitochondrial integrity, (ii) the influence of these proteins on mitochondria are age- and tissue-specific and (iii) changes of mitochondrial morphology do not inevitably cause functional impairments.


Assuntos
Modelos Animais de Doenças , Camundongos , Mitocôndrias/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Fatores Etários , Animais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Neurônios/patologia , Neurônios/ultraestrutura , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Ubiquitina-Proteína Ligases/genética
9.
Brain Res ; 1096(1): 180-95, 2006 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16737688

RESUMO

Transgenic mice expressing a mutated human Cu/Zn superoxide dismutase (SOD1) gene develop a motor neuron disease similar to familial amyotrophic lateral sclerosis (FALS). While the histopathology and the inflammatory reactions in the spinal cord of these mice are well described, their spatiotemporal extension into brain areas and the relationship between degenerative and inflammatory events remain obscure. In the present study, we investigated the time course and extent of degenerative changes and inflammatory reactions in the CNS during progression of the disease in a transgenic FALS model, the SOD1-G93A mouse with histological and immunohistochemical methods. Compared to non-transgenic littermates, the SOD1-G93A transgenics developed widespread degeneration in both motor and extra-motor regions up to telencephalic regions, including the cerebral cortex but sparing distinct regions like the striatum and hippocampus. We provide evidence that these degenerative processes are accompanied by intense inflammatory reactions in the brain, which spatiotemporally correlate with degeneration and comprise besides strong astro- and microgliotic reactions also an influx of peripheral immune cells such as T-lymphocytes and dendritic cells. Both degeneration and inflammatory reactions spread caudocranially, starting at 2 months in the spinal cord and reaching the telencephalon at 5 months of age. Since the corticospinal tract lacked any signs of degeneration, we conclude that the upper and the lower motor neurons degenerate independently of each other.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Sistema Nervoso Central/enzimologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/psicologia , Animais , Comportamento Animal/fisiologia , Progressão da Doença , Feminino , Imuno-Histoquímica , Inflamação/patologia , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Mutação , Degeneração Neural/patologia , Superóxido Dismutase-1 , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...