Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2316544121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442155

RESUMO

Muscle regeneration is a complex process relying on precise teamwork between multiple cell types, including muscle stem cells (MuSCs) and fibroadipogenic progenitors (FAPs). FAPs are also the main source of intramuscular adipose tissue (IMAT). Muscles without FAPs exhibit decreased IMAT infiltration but also deficient muscle regeneration, indicating the importance of FAPs in the repair process. Here, we demonstrate the presence of bidirectional crosstalk between FAPs and MuSCs via their secretion of extracellular vesicles (EVs) containing distinct clusters of miRNAs that is crucial for normal muscle regeneration. Thus, after acute muscle injury, there is activation of FAPs leading to a transient rise in IMAT. These FAPs also release EVs enriched with a selected group of miRNAs, a number of which come from an imprinted region on chromosome 12. The most abundant of these is miR-127-3p, which targets the sphingosine-1-phosphate receptor S1pr3 and activates myogenesis. Indeed, intramuscular injection of EVs from immortalized FAPs speeds regeneration of injured muscle. In late stages of muscle repair, in a feedback loop, MuSCs and their derived myoblasts/myotubes secrete EVs enriched in miR-206-3p and miR-27a/b-3p. The miRNAs repress FAP adipogenesis, allowing full muscle regeneration. Together, the reciprocal communication between FAPs and muscle cells via miRNAs in their secreted EVs plays a critical role in limiting IMAT infiltration while stimulating muscle regeneration, hence providing an important mechanism for skeletal muscle repair and homeostasis.


Assuntos
Vesículas Extracelulares , MicroRNAs , Células Satélites de Músculo Esquelético , Fibras Musculares Esqueléticas , Comunicação , MicroRNAs/genética , Regeneração/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38197701

RESUMO

White adipose tissue (WAT) controls energy storage, expenditure, and endocrine function. Rho-kinase (ROCK) is related to impaired thermogenesis, downregulation of preadipocyte differentiation, and adipokine production. Furthermore, WAT ROCK responds to metabolic stress from high-fat diets or diabetes. However, ROCK distribution in adipose depots and its response to aging and sex remain unclear. Thus, we aim to investigate ROCK function in adipose tissue of rodent and human in response to aging and sex. We observed specific differences in the ROCK1/2 distribution in inguinal WAT (ingWAT), perigonadal WAT (pgWAT), and brown adipose tissue of male and female rodents. However, ROCK2 expression was lower in female ingWAT compared with males, a fact that was not observed in the other depots. In the pgWAT and ingWAT of male and female rodents, ROCK activity increased during development. Moreover, middle-aged female rodents and humans showed downregulation in ROCK activity after acute physical exercise. Interestingly, ROCK levels were associated with several inflammatory markers both in rats and humans WAT (Nfkb1, Tnf, Il1b, Il6, and Mcp1). Induction of cell senescence by etoposide elevates ROCK activity in human preadipocytes; however, silencing ROCK1/2 demonstrates improvement in the inflammatory and cell senescence state. Using public databases, several pathways were strongly associated with ROCK modulation in WAT. In summary, WAT ROCK increases with development in association with inflammatory markers. Further, ROCK activity was attenuated by acute physical exercise, implicating it as a possible therapeutic target for metabolism improvement mediated by adipose tissue inflammatory state changes.


Assuntos
Roedores , Quinases Associadas a rho , Humanos , Ratos , Masculino , Feminino , Animais , Pessoa de Meia-Idade , Quinases Associadas a rho/fisiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento , Tecido Adiposo
3.
Mol Metab ; 64: 101558, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35872305

RESUMO

OBJECTIVE: Cellular senescence, an irreversible proliferative cell arrest, is caused by excessive intracellular or extracellular stress/damage. Increased senescent cells have been identified in multiple tissues in different metabolic and other aging-related diseases. Recently, several human and mouse studies emphasized the involvement of senescence in development and progression of NAFLD. Hyperinsulinemia, seen in obesity, metabolic syndrome, and other conditions of insulin resistance, has been linked to senescence in adipocytes and neurons. Here, we investigate the possible direct role of chronic hyperinsulinemia in the development of senescence in human hepatocytes. METHODS: Using fluorescence microscopy, immunoblotting, and gene expression, we tested senescence markers in human hepatocytes subjected to chronic hyperinsulinemia in vitro and validated the data in vivo by using liver-specific insulin receptor knockout (LIRKO) mice. The consequences of hyperinsulinemia were also studied in senescent hepatocytes following doxorubicin as a model of stress-induced senescence. Furthermore, the effects of senolytic agents in insulin- and doxorubicin-treated cells were analyzed. RESULTS: Results showed that exposing the hepatocytes to prolonged hyperinsulinemia promotes the onset of senescence by increasing the expression of p53 and p21. It also further enhanced the senescent phenotype in already senescent hepatocytes. Addition of insulin signaling pathway inhibitors prevented the increase in cell senescence, supporting the direct contribution of insulin. Furthermore, LIRKO mice, in which insulin signaling in the liver is abolished due to deletion of the insulin receptor gene, showed no differences in senescence compared to their wild-type counterparts despite having marked hyperinsulinemia indicating these are receptor-mediated effects. In contrast, the persistent hyperinsulinemia in LIRKO mice enhanced senescence in white adipose tissue. In vitro, senolytic agents dasatinib and quercetin reduced the prosenescent effects of hyperinsulinemia in hepatocytes. CONCLUSION: Our findings demonstrate a direct link between chronic hyperinsulinemia and hepatocyte senescence. This effect can be blocked by reducing the levels of insulin receptors or administration of senolytic drugs, such as dasatinib and quercetin.


Assuntos
Resistência à Insulina , Receptor de Insulina , Animais , Senescência Celular , Dasatinibe/metabolismo , Dasatinibe/farmacologia , Doxorrubicina/farmacologia , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Camundongos , Quercetina/metabolismo , Quercetina/farmacologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
4.
Matrix Biol ; 110: 129-140, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35562016

RESUMO

OBJECTIVE: Increased matrix stiffness is sensed by the collagen-binding receptor tyrosine kinase discoidin domain receptor 1 (DDR1). We have previously shown that DDR1 stimulates a positive feedback loop to increase its own expression in vascular smooth muscle cells (VSMCs). The transcriptional co-factors YAP/TAZ are stiffness sensing molecules that have not previously been investigated in DDR1 signaling. Here, we test the hypothesis that DDR1 signals through YAP/TAZ to auto-regulate its own expression. APPROACH AND RESULTS: We used vascular smooth muscle cells (VSMCs) from wild-type and DDR1 knockout mice stimulated with collagen and/or substrates of different stiffness. We show that DDR1 controls YAP/TAZ nuclear localization and activity, whereas knockdown of YAP/TAZ attenuates DDR1 expression. In response to increased substrate stiffness, collagen stimulation, or RhoA activation, YAP/TAZ translocate to the nucleus and bind to chromatin. Finally, collagen stimulation promotes increased YAP/TAZ association with the Ddr1 promoter. CONCLUSIONS: These findings reveal the mechanism by which DDR1 regulates YAP/TAZ activity which can then mediate positive feedback regulation of DDR1 expression by promoting transcription of the DDR1 gene.


Assuntos
Receptor com Domínio Discoidina 1/metabolismo , Miócitos de Músculo Liso , Aciltransferases/metabolismo , Animais , Receptor com Domínio Discoidina 1/genética , Retroalimentação , Homeostase , Camundongos , Miócitos de Músculo Liso/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP/metabolismo
5.
J Physiol ; 600(5): 1155-1169, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34392542

RESUMO

Extracellular miRNAs are found in a variety of body fluids and mediate intercellular and interorgan communication, thus regulating gene expression and cellular metabolism. These miRNAs are secreted either in small vesicles/exosomes (sEV) or bound to proteins such as Argonaute and high-density lipoprotein. Both exosomal and protein-bound circulating miRNAs are altered in obesity. Although all tissues can contribute to changes in circulating miRNAs, adipose tissue itself is an important source of these miRNAs, especially those in sEVs. These are derived from both adipocytes and macrophages and participate in crosstalk between these cells, as well as peripheral tissues, including liver, skeletal muscle and pancreas, whose function may be impaired in obesity. Changes in levels of circulating miRNAs have also been linked to the beneficial effects induced by weight loss interventions, including diet, exercise and bariatric surgery, further indicating a role for these miRNAs as mediators of disease pathogenesis. Here, we review the role of circulating miRNAs in the pathophysiology of obesity and explore their potential use as biomarkers and in therapy of obesity-associated metabolic syndrome.


Assuntos
Exossomos , MicroRNAs , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Exossomos/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 40(7): 1763-1776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32493168

RESUMO

OBJECTIVE: Vascular calcification is a pathology characterized by arterial mineralization, which is a common late-term complication of atherosclerosis that independently increases the risk of adverse cardiovascular events by fourfold. A major source of calcifying cells is transdifferentiating vascular smooth muscle cells (VSMCs). Previous studies showed that deletion of the collagen-binding receptor, DDR1 (discoidin domain receptor-1), attenuated VSMC calcification. Increased matrix stiffness drives osteogenesis, and DDR1 has been implicated in stiffness sensing in other cell types; however, the role of DDR1 as a mechanosensor in VSMCs has not been investigated. Here, we test the hypothesis that DDR1 senses increased matrix stiffness and promotes VSMC transdifferentiation and calcification. Approach and Results: Primary VSMCs isolated from Ddr1+/+ (wild-type) and Ddr1-/- (knockout) mice were studied on collagen-I-coated silicon substrates of varying stiffness, culturing in normal or calcifying medium. DDR1 expression and phosphorylation increased with increasing stiffness, as did in vitro calcification, nuclear localization of Runx2 (Runt-related transcription factor 2), and expression of other osteochondrocytic markers. By contrast, DDR1 deficient VSMCs were not responsive to stiffness and did not undergo transdifferentiation. DDR1 regulated stress fiber formation and RhoA (ras homolog family member A) activation through the RhoGEF (rho guanine nucleotide exchange factor), Vav2. Inhibition of actomyosin contractility reduced Runx2 activation and attenuated in vitro calcification in wild-type VSMCs. Finally, a novel positive feedforward loop was uncovered between DDR1 and actomyosin contractility, important in regulating DDR1 expression, clustering, and activation. CONCLUSIONS: This study provides mechanistic insights into DDR1 mechanosignaling and shows that DDR1 activity and actomyosin contractility are interdependent in mediating stiffness-dependent increases in VSMC calcification.


Assuntos
Aterosclerose/enzimologia , Transdiferenciação Celular , Receptor com Domínio Discoidina 1/metabolismo , Matriz Extracelular/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Osteogênese , Calcificação Vascular/enzimologia , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptor com Domínio Discoidina 1/deficiência , Receptor com Domínio Discoidina 1/genética , Modelos Animais de Doenças , Matriz Extracelular/patologia , Mecanotransdução Celular , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Calcificação Vascular/genética , Calcificação Vascular/patologia
7.
Mol Metab ; 39: 101006, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32360427

RESUMO

OBJECTIVE: Discoidin domain receptor 1 (DDR1) is a collagen binding receptor tyrosine kinase implicated in atherosclerosis, fibrosis, and cancer. Our previous research showed that DDR1 could regulate smooth muscle cell trans-differentiation, fibrosis and calcification in the vascular system in cardiometabolic disease. This spectrum of activity led us to question whether DDR1 might also regulate adipose tissue fibrosis and remodeling. METHODS: We have used a diet-induced mouse model of cardiometabolic disease to determine whether DDR1 deletion impacts upon adipose tissue remodeling and metabolic dysfunction. Mice were fed a high fat diet (HFD) for 12 weeks, followed by assessment of glucose and insulin tolerance, respiration via indirect calorimetry, and brown fat activity by FDG-PET. RESULTS: Feeding HFD induced DDR1 expression in white adipose tissue, which correlated with adipose tissue expansion and fibrosis. Ddr1-/- mice fed an HFD had improved glucose tolerance, reduced body fat, and increased brown fat activity and energy expenditure compared to Ddr1+/+ littermate controls. HFD-fed DDR1-/- mice also had reduced fibrosis, smaller adipocytes with multilocular lipid droplets, and increased UCP-1 expression characteristic of beige fat formation in subcutaneous adipose tissue. In vitro, studying C3H10T1/2 cells stimulated to differentiate, DDR1 inhibition caused a shift from white to beige adipocyte differentiation, whereas DDR1 expression was increased with TGFß-mediated pro-fibrotic differentiation. CONCLUSION: This study is the first to identify a role for DDR1 as a driver of adipose tissue fibrosis and suppressor of beneficial beige fat formation.


Assuntos
Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Receptor com Domínio Discoidina 1/genética , Metabolismo Energético , Deleção de Genes , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Animais , Calorimetria , Dieta Hiperlipídica/efeitos adversos , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Imuno-Histoquímica , Síndrome Metabólica/diagnóstico , Camundongos , Camundongos Knockout , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , Gordura Subcutânea/metabolismo , Tomografia Computadorizada por Raios X
8.
Front Cardiovasc Med ; 5: 174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581820

RESUMO

Vascular calcification is a complex pathological process occurring in patients with atherosclerosis, type 2 diabetes, and chronic kidney disease. The extracellular matrix, via matricrine-receptor signaling plays important roles in the pathogenesis of calcification. Calcification is mediated by osteochondrocytic-like cells that arise from transdifferentiating vascular smooth muscle cells. Recent advances in our understanding of the plasticity of vascular smooth muscle cell and other cells of mesenchymal origin have furthered our understanding of how these cells transdifferentiate into osteochondrocytic-like cells in response to environmental cues. In the present review, we examine the role of the extracellular matrix in the regulation of cell behavior and differentiation in the context of vascular calcification. In pathological calcification, the extracellular matrix not only provides a scaffold for mineral deposition, but also acts as an active signaling entity. In recent years, extracellular matrix components have been shown to influence cellular signaling through matrix receptors such as the discoidin domain receptor family, integrins, and elastin receptors, all of which can modulate osteochondrocytic differentiation and calcification. Changes in extracellular matrix stiffness and composition are detected by these receptors which in turn modulate downstream signaling pathways and cytoskeletal dynamics, which are critical to osteogenic differentiation. This review will focus on recent literature that highlights the role of cell-matrix interactions and how they influence cellular behavior, and osteochondrocytic transdifferentiation in the pathogenesis of cardiovascular calcification.

9.
Arterioscler Thromb Vasc Biol ; 38(8): 1878-1889, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29930002

RESUMO

Objective- Vascular calcification is a common and severe complication in patients with atherosclerosis which is exacerbated by type 2 diabetes mellitus. Our laboratory recently reported that the collagen receptor discoidin domain receptor 1 (DDR1) mediates vascular calcification in atherosclerosis; however, the underlying mechanisms are unknown. During calcification, vascular smooth muscle cells transdifferentiate into osteoblast-like cells, in a process driven by the transcription factor RUNX2 (runt-related transcription factor 2). DDR1 signals via the phosphoinositide 3-kinase/Akt pathway, which is also central to insulin signaling, and upstream of RUNX2, and this led us to investigate whether DDR1 promotes vascular calcification in diabetes mellitus via this pathway. Approach and Results- Ddr1+/+ ; Ldlr-/- (single knock-out) and Ddr1-/- ; Ldlr-/- (double knock-out) mice were placed on high-fat diet for 12 weeks to induce atherosclerosis and type 2 diabetes mellitus. Von Kossa staining revealed reduced vascular calcification in the aortic arch of double knock-out compared with single knock-out mice. Immunofluorescent staining for RUNX2 was present in calcified plaques of single knock-out but not double knock-out mice. Primary vascular smooth muscle cells obtained from Ddr1+/+ and Ddr1-/- mice were cultured in calcifying media. DDR1 deletion resulted in reduced calcification, a 74% reduction in p-Akt levels, and an 88% reduction in RUNX2 activity. Subcellular fractionation revealed a 77% reduction in nuclear RUNX2 levels in Ddr1-/- vascular smooth muscle cells. DDR1 associated with phosphoinositide 3-kinase, and treatment with the inhibitor wortmannin attenuated calcification. Finally, we show that DDR1 is important to maintain the microtubule cytoskeleton which is required for the nuclear localization of RUNX2. Conclusions- These novel findings demonstrate that DDR1 promotes RUNX2 activity and atherosclerotic vascular calcification in diabetes mellitus via phosphoinositide 3-kinase/Akt signaling.


Assuntos
Aterosclerose/enzimologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Receptor com Domínio Discoidina 1/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Calcificação Vascular/enzimologia , Transporte Ativo do Núcleo Celular , Animais , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Dieta Hiperlipídica , Receptor com Domínio Discoidina 1/deficiência , Receptor com Domínio Discoidina 1/genética , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosforilação , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Calcificação Vascular/genética , Calcificação Vascular/patologia
10.
Am J Physiol Gastrointest Liver Physiol ; 309(5): G350-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26138463

RESUMO

The small intestine contributes to diabetic dyslipidemia through the overproduction of apolipoprotein B48 (apoB48)-containing chylomicron particles. An important regulator of chylomicron generation is dietary lipid absorption, underlining the potential involvement of intestinal lipid transporters for developing dyslipidemia. Intestinal expression of scavenger receptor class B type I (SR-BI) has been found to be upregulated in animal models of insulin resistance. Here we characterized the potential importance of SR-BI in contributing to chylomicron production and postprandial hypertriglyceridemia in vivo. Postprandial triglyceride (TG)-rich lipoprotein (TRL) production was characterized in hamsters treated with the SR-BI inhibitor to block lipid transport-1 (BLT-1) under healthy conditions or conditions of diet-induced obesity and dyslipidemia. BLT-1 (1 mg/kg) or vehicle was administered acutely in chow-fed hamsters or gavaged twice daily over 10 days during high-fructose, high-fat, high-cholesterol (FFC) feeding. Effects of acute SR-BI inhibition by BLT-1 were confirmed in healthy fat-loaded rats. Finally, plasma lipid levels were compared between SR-BI(-/-) mice and their wild-type counterparts fed either chow or a 12-wk high-fat diet. Acute BLT-1 treatment reduced postprandial plasma and TRL TG levels in healthy hamsters and rats. Chronic BLT-1 treatment of FFC-fed hamsters blunted diet-induced weight gain and fasting hypertriglyceridemia, and lowered postprandial TRL-TG, -cholesterol, and -apoB48 levels. Finally, SR-BI(-/-) mice displayed lower plasma and TRL TG levels relative to wild type, and diet-induced weight gain and postprandial hypertriglyceridemia were hindered in SR-BI(-/-) mice. We conclude that intestinal SR-BI is a critical regulator of postprandial lipoprotein production, emphasizing its potential as a target for preventing diabetic dyslipidemia.


Assuntos
Quilomícrons/metabolismo , Intestino Delgado/metabolismo , Obesidade/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Quilomícrons/genética , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/etiologia , Dislipidemias/metabolismo , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Ratos , Ratos Sprague-Dawley , Receptores Depuradores Classe B/genética , Triglicerídeos/sangue , Triglicerídeos/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 302(9): G1043-52, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22345552

RESUMO

Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis.


Assuntos
Azetidinas/administração & dosagem , Glicemia/metabolismo , Quilomícrons/biossíntese , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/fisiopatologia , Animais , Anticolesterolemiantes/administração & dosagem , Glicemia/efeitos dos fármacos , Cricetinae , Dieta Hiperlipídica , Ezetimiba , Masculino , Mesocricetus , Resultado do Tratamento
12.
Am J Physiol Gastrointest Liver Physiol ; 301(2): G326-37, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21546579

RESUMO

Intestinal lipid dysregulation is a common feature of insulin-resistant states. The present study investigated alterations in gene expression of key proteins involved in the active absorption of dietary fat and cholesterol in response to development of insulin resistance. Studies were conducted in two diet-induced animal models of insulin resistance: fructose-fed hamster and high-fat-fed mouse. Changes in the mRNA abundance of lipid transporters, adenosine triphosphate cassette (ABC) G5, ABCG8, FA-CoA ligase fatty acid translocase P4, Niemann-Pick C1-Like1 (NPC1L1), fatty acid transport protein 4 (FATP4), and Scavenger Receptor Class B Type I (SR-BI), were assessed in intestinal fragments (duodenum, jejunum, and ileum) using quantitative real-time PCR. Of all the transporters evaluated, SR-B1 showed the most significant changes in both animal models examined. A marked stimulation of SR-B1 expression was observed in all intestinal segments examined in both insulin-resistant animal models. The link between SR-BI expression and intestinal lipoprotein production was then examined in the Caco-2 cell model. SR-B1 overexpression in Caco-2 cells increased apolipoprotein B (apoB) 100 and apoB48 secretion, whereas RNAi knock down of SR-B1 decreased secretion of both apoB100 and apoB48. We also observed changes in subcellular distribution of SR-B1 in response to exogenous lipid and insulin. Confocal microscopy revealed marked changes in SR-BI subcellular distribution in response to both exogenous lipids (oleate) and insulin. In summary, marked stimulation of intestinal SR-BI occurs in vivo in animal models of diet-induced insulin resistance, and modulation of SR-BI in vitro regulates production of apoB-containing lipoprotein particles. We postulate that apical and/or basolateral SR-BI may play an important role in intestinal chylomicron production and may contribute to chylomicron overproduction normally observed in insulin-resistant states.


Assuntos
Apolipoproteína B-48/biossíntese , Antígenos CD36/metabolismo , Antígenos CD36/farmacologia , Gorduras na Dieta/farmacologia , Frutose/farmacologia , Mucosa Intestinal/metabolismo , RNA Mensageiro/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antígenos CD36/genética , Cricetinae , Duodeno/metabolismo , Dislipidemias , Jejum/fisiologia , Proteínas de Transporte de Ácido Graxo/genética , Proteínas de Transporte de Ácido Graxo/metabolismo , Expressão Gênica , Íleo/metabolismo , Insulina/fisiologia , Resistência à Insulina , Jejuno/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Período Pós-Prandial/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...