Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(1): 302-317, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37488711

RESUMO

The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes. Here, we report a new assembly of the N. benthamiana genome as well as the generation of low-nicotine lines by CRISPR/Cas9-based inactivation of berberine bridge enzyme-like proteins (BBLs). Triple as well as quintuple mutants accumulated three to four times less nicotine than the respective control lines. The availability of lines without functional BBLs allowed us to probe their catalytic role in nicotine biosynthesis, which has remained obscure. Notably, chiral analysis revealed that the enantiomeric purity of nicotine was fully lost in the quintuple mutants. In addition, precursor feeding experiments showed that these mutants cannot facilitate the specific loss of C6 hydrogen that characterizes natural nicotine biosynthesis. Our work delivers an improved N. benthamiana chassis for bioproduction and uncovers the crucial role of BBLs in the stereoselectivity of nicotine biosynthesis.


Assuntos
Alcaloides , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Nicotina/metabolismo , Alcaloides/metabolismo
2.
Gigascience ; 8(12)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31816089

RESUMO

BACKGROUND: We report an improved assembly and scaffolding of the European pear (Pyrus communis L.) genome (referred to as BartlettDHv2.0), obtained using a combination of Pacific Biosciences RSII long-read sequencing, Bionano optical mapping, chromatin interaction capture (Hi-C), and genetic mapping. The sample selected for sequencing is a double haploid derived from the same "Bartlett" reference pear that was previously sequenced. Sequencing of di-haploid plants makes assembly more tractable in highly heterozygous species such as P. communis. FINDINGS: A total of 496.9 Mb corresponding to 97% of the estimated genome size were assembled into 494 scaffolds. Hi-C data and a high-density genetic map allowed us to anchor and orient 87% of the sequence on the 17 pear chromosomes. Approximately 50% (247 Mb) of the genome consists of repetitive sequences. Gene annotation confirmed the presence of 37,445 protein-coding genes, which is 13% fewer than previously predicted. CONCLUSIONS: We showed that the use of a doubled-haploid plant is an effective solution to the problems presented by high levels of heterozygosity and duplication for the generation of high-quality genome assemblies. We present a high-quality chromosome-scale assembly of the European pear Pyrus communis and demostrate its high degree of synteny with the genomes of Malus x Domestica and Pyrus x bretschneideri.


Assuntos
Cromossomos de Plantas/genética , Mapeamento de Sequências Contíguas/métodos , Pyrus/genética , Tamanho do Genoma , Haploidia , Anotação de Sequência Molecular , Melhoramento Vegetal , Análise de Sequência de DNA , Sintenia
3.
Nat Genet ; 49(7): 1099-1106, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28581499

RESUMO

Using the latest sequencing and optical mapping technologies, we have produced a high-quality de novo assembly of the apple (Malus domestica Borkh.) genome. Repeat sequences, which represented over half of the assembly, provided an unprecedented opportunity to investigate the uncharacterized regions of a tree genome; we identified a new hyper-repetitive retrotransposon sequence that was over-represented in heterochromatic regions and estimated that a major burst of different transposable elements (TEs) occurred 21 million years ago. Notably, the timing of this TE burst coincided with the uplift of the Tian Shan mountains, which is thought to be the center of the location where the apple originated, suggesting that TEs and associated processes may have contributed to the diversification of the apple ancestor and possibly to its divergence from pear. Finally, genome-wide DNA methylation data suggest that epigenetic marks may contribute to agronomically relevant aspects, such as apple fruit development.


Assuntos
Metilação de DNA , DNA de Plantas/genética , Genoma de Planta , Malus/genética , Cromossomos de Plantas/genética , Elementos de DNA Transponíveis , DNA de Plantas/química , Frutas/crescimento & desenvolvimento , Genes de Plantas , Genótipo , Desequilíbrio de Ligação , Malus/crescimento & desenvolvimento , Anotação de Sequência Molecular , Análise de Sequência de DNA , Sintenia
4.
Plant J ; 86(1): 62-74, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26919684

RESUMO

Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple.


Assuntos
Genoma de Planta/genética , Técnicas de Genotipagem/métodos , Malus/genética , Polimorfismo de Nucleotídeo Único/genética , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...