Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Cells ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667309

RESUMO

Variants of mitochondrial DNA (mtDNA) have been identified as risk factors for the development of Parkinson's disease (PD). However, the underlying pathogenetic mechanisms remain unclear. Cybrid models carrying various genotypes of mtDNA variants were tested for resistance to PD-simulating MPP+ treatment. The most resistant line was selected for transcriptome profiling, revealing specific genes potentially influencing the resistant characteristic. We then conducted protein validation and molecular biological studies to validate the related pathways as the influential factor. Cybrids carrying the W3 mtDNA haplogroup demonstrated the most resistance to the MPP+ treatment. In the transcriptome study, PPP1R15A was identified, while further study noted elevated expressions of the coding protein GADD34 across all cybrids. In the study of GADD34-related mitochondrial unfolding protein response (mtUPR), we found that canonical mtUPR, launched by the phosphate eIF2a, is involved in the resistant characteristic of specific mtDNA to MPP+ treatment. Our study suggests that a lower expression of GADD34 in the late phase of mtUPR may prolong the mtUPR process, thereby benefitting protein homeostasis and facilitating cellular resistance to PD development. We herein demonstrate that GADD34 plays an important role in PD development and should be further investigated as a target for the development of therapies for PD.


Assuntos
DNA Mitocondrial , Haplótipos , Doença de Parkinson , Doença de Parkinson/genética , Humanos , DNA Mitocondrial/genética , Haplótipos/genética , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética , Resposta a Proteínas não Dobradas/genética
2.
Mitochondrion ; 76: 101856, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408618

RESUMO

Mitochondria are important for maintaining cellular energy metabolism and regulating cellular senescence. Mitochondrial DNA (mtDNA) encodes subunits of the OXPHOS complexes which are essential for cellular respiration and energy production. Meanwhile, mtDNA variants have been associated with the pathogenesis of neurodegenerative diseases, including MELAS, for which no effective treatment has been developed. To alleviate the pathological conditions involved in mitochondrial disorders, mitochondria transfer therapy has shown promise. Wharton's jelly mesenchymal stem cells (WJMSCs) have been identified as suitable mitochondria donors for mitochondria-defective cells, wherein mitochondrial functions can be rescued. Miro1 participates in mitochondria trafficking by anchoring mitochondria to microtubules. In this study, we identified Miro1 over-expression as a factor that could help to enhance the efficiency of mitochondrial delivery. More specifically, we reveal that Miro1 over-expressed WJMSCs significantly improved intercellular communications, cell proliferation rates, and mitochondrial membrane potential, while restoring mitochondrial bioenergetics in mitochondria-defective fibroblasts. Furthermore, Miro1 over-expressed WJMSCs decreased rates of induced apoptosis and ROS production in MELAS fibroblasts; although, Miro1 over-expression did not rescue mtDNA mutation ratios nor mitochondrial biogenesis. This study presents a potentially novel therapeutic strategy for treating mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and other diseases associated with dysfunctional mitochondria, while the pathophysiological relevance of our results should be further verified by animal models and clinical studies.


Assuntos
Células-Tronco Mesenquimais , Mitocôndrias , Geleia de Wharton , Proteínas rho de Ligação ao GTP , Humanos , Apoptose , Proliferação de Células , Células Cultivadas , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fibroblastos/metabolismo , Potencial da Membrana Mitocondrial , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Geleia de Wharton/citologia
3.
NPJ Biofilms Microbiomes ; 10(1): 2, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228675

RESUMO

Locomotor activity is an innate behavior that can be triggered by gut-motivated conditions, such as appetite and metabolic condition. Various nutrient-sensing receptors distributed in the vagal terminal in the gut are crucial for signal transduction from the gut to the brain. The levels of gut hormones are closely associated with the colonization status of the gut microbiota, suggesting a complicated interaction among gut bacteria, gut hormones, and the brain. However, the detailed mechanism underlying gut microbiota-mediated endocrine signaling in the modulation of locomotion is still unclear. Herein, we show that broad-spectrum antibiotic cocktail (ABX)-treated mice displayed hypolocomotion and elevated levels of the gut hormone glucagon-like peptide-1 (GLP-1). Blockade of the GLP-1 receptor and subdiaphragmatic vagal transmission rescued the deficient locomotor phenotype in ABX-treated mice. Activation of the GLP-1 receptor and vagal projecting brain regions led to hypolocomotion. Finally, selective antibiotic treatment dramatically increased serum GLP-1 levels and decreased locomotion. Colonizing Lactobacillus reuteri and Bacteroides thetaiotaomicron in microbiota-deficient mice suppressed GLP-1 levels and restored the hypolocomotor phenotype. Our findings identify a mechanism by which specific gut microbes mediate host motor behavior via the enteroendocrine and vagal-dependent neural pathways.


Assuntos
Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Nervo Vago/metabolismo , Transdução de Sinais
4.
J Biomed Sci ; 30(1): 92, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38012609

RESUMO

Psychological stress is a global issue that affects at least one-third of the population worldwide and increases the risk of numerous psychiatric disorders. Accumulating evidence suggests that the gut and its inhabiting microbes may regulate stress and stress-associated behavioral abnormalities. Hence, the objective of this review is to explore the causal relationships between the gut microbiota, stress, and behavior. Dysbiosis of the microbiome after stress exposure indicated microbial adaption to stressors. Strikingly, the hyperactivated stress signaling found in microbiota-deficient rodents can be normalized by microbiota-based treatments, suggesting that gut microbiota can actively modify the stress response. Microbiota can regulate stress response via intestinal glucocorticoids or autonomic nervous system. Several studies suggest that gut bacteria are involved in the direct modulation of steroid synthesis and metabolism. This review provides recent discoveries on the pathways by which gut microbes affect stress signaling and brain circuits and ultimately impact the host's complex behavior.


Assuntos
Borboletas , Microbioma Gastrointestinal , Animais , Humanos
5.
Brain Behav Immun ; 113: 104-123, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37393058

RESUMO

Social novelty is a cognitive process that is essential for animals to interact strategically with conspecifics based on their prior experiences. The commensal microbiome in the gut modulates social behavior through various routes, including microbe-derived metabolite signaling. Short-chain fatty acids (SCFAs), metabolites derived from bacterial fermentation in the gastrointestinal tract, have been previously shown to impact host behavior. Herein, we demonstrate that the delivery of SCFAs directly into the brain disrupts social novelty through distinct neuronal populations. We are the first to observe that infusion of SCFAs into the lateral ventricle disrupted social novelty in microbiome-depleted mice without affecting brain inflammatory responses. The deficit in social novelty can be recapitulated by activating calcium/calmodulin-dependent protein kinase II (CaMKII)-labeled neurons in the bed nucleus of the stria terminalis (BNST). Conversely, chemogenetic silencing of the CaMKII-labeled neurons and pharmacological inhibition of fatty acid oxidation in the BNST reversed the SCFAs-induced deficit in social novelty. Our findings suggest that microbial metabolites impact social novelty through a distinct neuron population in the BNST.


Assuntos
Núcleos Septais , Camundongos , Animais , Núcleos Septais/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Neurônios/metabolismo , Transdução de Sinais , Comportamento Social
6.
BMC Biol ; 21(1): 103, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158879

RESUMO

BACKGROUND: Aging in postmitotic tissues is associated with clonal expansion of somatic mitochondrial deletions, the origin of which is not well understood. Such deletions are often flanked by direct nucleotide repeats, but this alone does not fully explain their distribution. Here, we hypothesized that the close proximity of direct repeats on single-stranded mitochondrial DNA (mtDNA) might play a role in the formation of deletions. RESULTS: By analyzing human mtDNA deletions in the major arc of mtDNA, which is single-stranded during replication and is characterized by a high number of deletions, we found a non-uniform distribution with a "hot spot" where one deletion breakpoint occurred within the region of 6-9 kb and another within 13-16 kb of the mtDNA. This distribution was not explained by the presence of direct repeats, suggesting that other factors, such as the spatial proximity of these two regions, can be the cause. In silico analyses revealed that the single-stranded major arc may be organized as a large-scale hairpin-like loop with a center close to 11 kb and contacting regions between 6-9 kb and 13-16 kb, which would explain the high deletion activity in this contact zone. The direct repeats located within the contact zone, such as the well-known common repeat with a first arm at 8470-8482 bp (base pair) and a second arm at 13,447-13,459 bp, are three times more likely to cause deletions compared to direct repeats located outside of the contact zone. A comparison of age- and disease-associated deletions demonstrated that the contact zone plays a crucial role in explaining the age-associated deletions, emphasizing its importance in the rate of healthy aging. CONCLUSIONS: Overall, we provide topological insights into the mechanism of age-associated deletion formation in human mtDNA, which could be used to predict somatic deletion burden and maximum lifespan in different human haplogroups and mammalian species.


Assuntos
Genoma Mitocondrial , Animais , Humanos , Mitocôndrias , DNA Mitocondrial/genética , Genoma Humano , Estrutura Secundária de Proteína , DNA de Cadeia Simples , Mamíferos
7.
Curr Issues Mol Biol ; 45(3): 1794-1809, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36975485

RESUMO

Mitochondria are involved in many vital functions in living cells, including the synthesis of ATP by oxidative phosphorylation (OXPHOS) and regulation of nuclear gene expression through retrograde signaling. Leigh syndrome is a heterogeneous neurological disorder resulting from an isolated complex I deficiency that causes damage to mitochondrial energy production. The pathogenic mitochondrial DNA (mtDNA) variant m.13513G>A has been associated with Leigh syndrome. The present study investigated the effects of this mtDNA variant on the OXPHOS system and cell retrograde signaling. Transmitochondrial cytoplasmic hybrid (cybrid) cell lines harboring 50% and 70% of the m.13513G>A variant were generated and tested along with wild-type (WT) cells. The functionality of the OXPHOS system was evaluated by spectrophotometric assessment of enzyme activity and high-resolution respirometry. Nuclear gene expression was investigated by RNA sequencing and droplet digital PCR. Increasing levels of heteroplasmy were associated with reduced OXPHOS system complex I, IV, and I + III activities, and high-resolution respirometry also showed a complex I defect. Profound changes in transcription levels of nuclear genes were observed in the cell lines harboring the pathogenic mtDNA variant, indicating the physiological processes associated with defective mitochondria.

8.
Eur J Med Res ; 28(1): 82, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36805797

RESUMO

BACKGROUND: Autophagy is a catabolic process that recycles damaged organelles and acts as a pro-survival mechanism, but little is known about autophagy dysfunction and epigenetic regulation in patients with obstructive sleep apnea (OSA). METHODS: Protein/gene expressions and DNA methylation levels of the autophagy-related genes (ATG) were examined in blood leukocytes from 64 patients with treatment-naïve OSA and 24 subjects with primary snoring (PS). RESULTS: LC3B protein expression of blood monocytes, and ATG5 protein expression of blood neutrophils were decreased in OSA patients versus PS subjects, while p62 protein expression of cytotoxic T cell was increased, particularly in those with nocturia. ATG5, ULK1, and BECN1 gene expressions of peripheral blood mononuclear cells were decreased in OSA patients versus PS subjects. LC3B gene promoter regions were hypermethylated in OSA patients, particularly in those with excessive daytime sleepiness, while ATG5 gene promoter regions were hypermethylated in those with morning headache or memory impairment. LC3B protein expression of blood monocytes and DNA methylation levels of the LC3B gene promoter region were negatively and positively correlated with apnea hyponea index, respectively. In vitro intermittent hypoxia with re-oxygenation exposure to human THP-1/HUVEC cell lines resulted in LC3B/ATG5/ULK1/BECN1 down-regulations and p62 up-regulation along with increased apoptosis and oxidative stress, while rapamycin and umbilical cord-mesenchymal stem cell treatment reversed these abnormalities through de-methylation of the ATG5 gene promoter. CONCLUSIONS: Impaired autophagy activity in OSA patients was regulated by aberrant DNA methylation, correlated with clinical phenotypes, and contributed to increased cell apoptosis and oxidative stress. Autophagy enhancers may be novel therapeutics for OSA-related neurocognitive dysfunction.


Assuntos
Metilação de DNA , Epigênese Genética , Humanos , Metilação de DNA/genética , Leucócitos Mononucleares , Estresse Oxidativo/genética , Apoptose/genética , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética
9.
Diabetologia ; 66(5): 913-930, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692509

RESUMO

AIMS/HYPOTHESIS: The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS: We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS: Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION: Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
10.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497089

RESUMO

Parkinson disease (PD) is the second-most common neurodegenerative disease. The characteristic pathology of progressive dopaminergic neuronal loss in people with PD is associated with iron accumulation and is suggested to be driven in part by the novel cell death pathway, ferroptosis. A unique modality of cell death, ferroptosis is mediated by iron-dependent phospholipid peroxidation. The mechanisms of ferroptosis inhibitors enhance antioxidative capacity to counter the oxidative stress from lipid peroxidation, such as through the system xc-/glutathione (GSH)/glutathione peroxidase 4 (GPX4) axis and the coenzyme Q10 (CoQ10)/FSP1 pathway. Another means to reduce ferroptosis is with iron chelators. To date, there is no disease-modifying therapy to cure or slow PD progression, and a recent topic of research seeks to intervene with the development of PD via regulation of ferroptosis. In this review, we provide a discussion of different cell death pathways, the molecular mechanisms of ferroptosis, the role of ferroptosis in blood-brain barrier damage, updates on PD studies in ferroptosis, and the latest progress of pharmacological agents targeting ferroptosis for the intervention of PD in clinical trials.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Doença de Parkinson/tratamento farmacológico , Glutationa/metabolismo , Encéfalo/metabolismo
11.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36443312

RESUMO

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

12.
Cells ; 11(21)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36359746

RESUMO

INTRODUCTION: Several environmental stimuli may influence lupus, particularly viral infections. In this study, we used an imiquimod-induced lupus mouse model focused on the TLR7 pathway and proteomics analysis to determine the specific pathway related to viral infection and the related protein expressions in splenic B cells to obtain insight into B-cell responses to viral infection in the lupus model. MATERIALS AND METHODS: We treated FVB/N wild-type mice with imiquimod for 8 weeks to induce lupus symptoms and signs, retrieved splenocytes, selected B cells, and conducted the proteomic analysis. The B cells were co-cultured with CD40L+ feeder cells for another week before performing Western blot analysis. Panther pathway analysis was used to disclose the pathways activated and the protein-protein interactome was analyzed by the STRING database in this lupus murine model. RESULTS: The lupus model was well established and well demonstrated with serology evidence and pathology proof of lupus-mimicking organ damage. Proteomics data of splenic B cells revealed that the most important activated pathways (fold enrichment > 100) demonstrated positive regulation of the MDA5 signaling pathway, negative regulation of IP-10 production, negative regulation of chemokine (C-X-C motif) ligand 2 production, and positive regulation of the RIG-I signaling pathway. A unique protein-protein interactome containing 10 genes was discovered, within which ISG15, IFIH1, IFIT1, DDX60, and DHX58 were demonstrated to be downstream effectors of MDA5 signaling. Finally, we found B-cell intracellular cytosolic proteins via Western blot experiment and continued to observe MDA5-related pathway activation. CONCLUSION: In this experiment, we confirmed that the B cells in the lupus murine model focusing on the TLR7 pathway were activated through the MDA5 signaling pathway, an important RNA sensor implicated in the detection of viral infections and autoimmunity. The MDA5 agonist/antagonist RNAs and the detailed molecular interactions within B cells are worthy of further investigation for lupus therapy.


Assuntos
Helicase IFIH1 Induzida por Interferon , Viroses , Animais , Camundongos , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Imiquimode/farmacologia , Proteômica , Transdução de Sinais , Receptor 7 Toll-Like , Viroses/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Lúpus Eritematoso Sistêmico/induzido quimicamente
13.
J Vis Exp ; (184)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723471

RESUMO

The impact of gut microbiota and their metabolites on host physiology and behavior has been extensively investigated in this decade. Numerous studies have revealed that gut microbiota-derived metabolites modulate brain-mediated physiological functions through intricate gut-brain pathways in the host. Short-chain fatty acids (SCFAs) are the major bacteria-derived metabolites produced during dietary fiber fermentation by the gut microbiome. Secreted SCFAs from the gut can act at multiple sites in the periphery, affecting the immune, endocrine, and neural responses due to the vast distribution of SCFAs receptors. Therefore, it is challenging to differentiate the central and peripheral effects of SCFAs through oral and intraperitoneal administration of SCFAs. This paper presents a video-based method to interrogate the functional role of SCFAs in the brain via a guide cannula in freely moving mice. The amount and type of SCFAs in the brain can be adjusted by controlling the infusion volume and rate. This method can provide scientists with a way to appreciate the role of gut-derived metabolites in the brain.


Assuntos
Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Animais , Bactérias/metabolismo , Encéfalo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Microbioma Gastrointestinal/fisiologia , Camundongos
14.
J Clin Med ; 11(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35683420

RESUMO

Background: Growth differentiation factor (GDF15) is a superfamily of transforming growth factor-beta which has been suggested to be correlated with various pathological conditions. The current study aimed to investigate the predicted role of circulating GDF15 in diabetic metabolism characteristics and diabetic neuropathy. Methods: 241 diabetic patients and 42 non-diabetic subjects were included to participate in the study. The plasma GDF15 levels were measured using ELISA. Chronic kidney disease and albuminuria were defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) guideline. The nerve conductive study (NCS) was performed with measurement of distal latency, amplitude, nerve conduction velocity (NCV), H-reflex, and F-wave studies. Results: The diabetic group had a significantly higher prevalence of chronic kidney disease and higher plasma GDF15 level. After adjusting for age and BMI, GDF15 was significantly positively correlated with waist circumference (r = 0.332, p = <0.001), hip circumference (r = 0.339, p < 0.001), HbA1c (r = 0.302, p < 0.001), serum creatine (r = 0.146, p = 0.017), urine albumin/creatinine ratio (r = 0.126, p = 0.040), and HOMA-IR (r = 0.166, p = 0.007). As to NCS, GDF15 was significantly correlated with all latency and amplitude of sensory and motor nerves, as well as F-wave and H-reflex latencies. The area under the curve (AUC) in predicting tibial motor nerve neuropathy (MNCV) in all subjects and in the diabetic group for GDF15 was 0.646 (p = 0.001) and 0.610 (p = 0.012), respectively; for HbA1c was 0.639 (p = 0.001) and 0.604 (p = 0.018), respectively. Predicting ulnar sensory nerve neuropathy for GDF15 was 0.639 (p = 0.001) and 0.658 (p = 0.001), respectively; for HbA1c was 0.545 (p = 0.307) and 0.545 (p = 0.335), respectively. Predicting median sensory nerve neuropathy for GDF15 was 0.633 (p = 0.007) and 0.611 (p = 0.032), respectively; for HbA1c was 0.631 (p = 0.008) and 0.607 (p = 0.038), respectively. Predicting CKD for GDF15 was 0.709 (95% CI, 0.648−0.771), p < 0.001) and 0.676 (95% CI, 0.605−0.746), p < 0.001), respectively; for HbA1c was 0.560 (95% CI, 0.493−0.627); p = 0.080) and 0.515 (95% CI, 0.441−0.588); p = 0.697), respectively. Conclusions: We suggest that there is a significant association between the increased serum GDF-15 level and metabolic parameters and diabetic neuropathy. Plasma GDF15 may be an independent predictor of diabetic neuropathy.

15.
Neuropharmacology ; 214: 109140, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613660

RESUMO

Anxiety is characterized by feelings of tension and worry even in the absence of threatening stimulus. Pathological condition of anxiety elicits defensive behavior and aversive reaction ultimately impacting individuals and society. The gut microbiota has been shown to contribute to the modulation of anxiety-like behavior in rodents through the gut-brain axis. Several studies observed that germ-free (GF) and the broad spectrum of antibiotic cocktail (ABX)-treated rodents display lowered anxiety-like behavior. We speculate that gut microbial short-chain fatty acids (SCFA) modulate the innate anxiety response. Herein, we administered SCFA in the drinking water in adult mice treated with ABX to deplete the microbiota and tested their anxiety-like behavior. To further augment the innate fear response, we enhanced the aversive stimulus of the anxiety-like behavior tests. Strikingly, we found that the anxiety-like behavior in ABX mice was not altered when enhanced aversive stimulus, while control and ABX mice supplemented with SCFA displayed increased anxiety-like behavior. Vagus nerve serves as a promising signaling pathway in the gut-brain axis. We determined the role of vagus nerve by subdiaphragmatic vagotomy (SDV) in ABX mice supplemented with SCFA. We found that the restored anxiety-like behavior in ABX mice by SCFA was unaffected by SDV. These findings suggest that gut microbiota can regulate anxiety-like behavior through their fermentation products SCFA.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade , Ácidos Graxos Voláteis/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
16.
J Diabetes Investig ; 13(1): 201-208, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34255930

RESUMO

AIMS/INTRODUCTION: Identifying diabetes-susceptible genetic variants will help to provide personalized therapy for the management of type 2 diabetes. Previous studies have reported a genetic risk score (GRS), computed by the sum of nuclear DNA (nDNA) risk alleles, that may predict the future requirement for insulin therapy. Although mitochondrial dysfunction has a close association with insulin resistance (IR), there are few studies investigating whether genetic variants of mitochondrial DNA (mtDNA) will affect the clinical characteristics of type 2 diabetes. MATERIALS AND METHODS: Mitochondrial haplogroups were determined using mtDNA whole genome next generation sequencing and 13 single nucleotide polymorphisms (SNPs) in nDNA susceptibility loci of 13 genes in 604 Taiwanese subjects with type 2 diabetes. A GRS of nDNA was computed by summation of the number of risk alleles. The correlation between the mtDNA haplogroup and the clinical characteristics of type 2 diabetes was assessed by logistic regression analysis. The results were compared with the GRS subgroups for the risk of insulin requirement. RESULTS: Mitochondrial haplogroups modulate the clinical characteristics of type 2 diabetes, in which patients harboring haplogroup D4, compared with those harboring non-D4 haplotypes, were less prone to require insulin treatment, after adjusting for age, gender, and diabetes duration. However, there was no association between insulin requirement and GRS calculated from nuclear genetic variants. CONCLUSIONS: Mitochondrial haplogroups, but not nuclear genetic variants, have a better association with the insulin requirement. The results highlight the role of mitochondria in the management of common metabolic diseases.


Assuntos
DNA Mitocondrial/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença/genética , Haplótipos/genética , Resistência à Insulina/genética , Povo Asiático/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Polimorfismo de Nucleotídeo Único , Taiwan/etnologia
17.
Antioxidants (Basel) ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943038

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease affecting more than 1% of the population over 65 years old. The etiology of the disease is unknown and there are only symptomatic managements available with no known disease-modifying treatment. Aging, genes, and environmental factors contribute to PD development and key players involved in the pathophysiology of the disease include oxidative stress, mitochondrial dysfunction, autophagic-lysosomal imbalance, and neuroinflammation. Recent epidemiology studies have shown that type-2 diabetes (T2DM) not only increased the risk for PD, but also is associated with PD clinical severity. A higher rate of insulin resistance has been reported in PD patients and is suggested to be a pathologic driver in this disease. Oral diabetic drugs including sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and dipeptidyl peptidase-4 (DPP-4) inhibitors have been shown to provide neuroprotective effects in both PD patients and experimental models; additionally, antidiabetic drugs have been demonstrated to lower incidence rates of PD in DM patients. Among these, the most recently developed drugs, SGLT2 inhibitors may provide neuroprotective effects through improving mitochondrial function and antioxidative effects. In this article, we will discuss the involvement of mitochondrial-related oxidative stress in the development of PD and potential benefits provided by antidiabetic agents especially focusing on sglt2 inhibitors.

18.
Antioxidants (Basel) ; 10(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34943074

RESUMO

Studies of the oxidative/anti-oxidative status in patients with Alzheimer's disease (AD) carrying different alleles of the apolipoprotein E (APOE) gene are currently inconclusive; meanwhile, data regarding mitochondrial DNA copy number (mtCN) remain limited. We herein determined the thiobarbituric acid reactive substances (TBARS), thiols, and mtCN in blood samples of 600 AD patients and 601 controls. A significantly higher oxidative TBARS (1.64 µmol/L), lower antioxidative thiols (1.60 µmol/L), and lower mtCN (2.34 log Delta Ct) were found in the AD cohort as compared to the non-AD cohort (1.54 µmol/L, 1.71 µmol/L, 2.46 log Delta Ct). We further identified the ε4 alleles (APOE4) and separated subjects into three groups according to the number of APOE4. A significant trend was noted in the TBARS levels of both AD and non-AD cohorts, highest in the homozygous two alleles (1.86 and 1.80 µmol/L), followed by heterozygous one allele (1.70 and 1.74 µmol/L), and lowest in the no APOE4 allele (1.56 and 1.48 µmol/L). Similar trends of lower thiols and mtCN were also found in the AD cohort. In our study of the influence of cholinesterase inhibitor therapy, we found significantly reduced TBARS levels, and elevated mtCN in AD patients receiving rivastigmine and galantamine therapy. Our study demonstrates associations between the APOE4 allele and oxidative stress biomarkers and mtCN. Using cholinesterase inhibitor therapy may benefit AD patients through attenuation of oxidative stress and manipulation of the mtCN.

19.
Antioxidants (Basel) ; 10(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34829725

RESUMO

The aim of this study was to identify novel microRNAs related to obstructive sleep apnea (OSA) characterized by intermittent hypoxia with re-oxygenation (IHR) injury. Illumina MiSeq was used to identify OSA-associated microRNAs, which were validated in an independent cohort. The interaction between candidate microRNA and target genes was detected in the human THP-1, HUVEC, and SH-SY5Y cell lines. Next-generation sequencing analysis identified 22 differentially expressed miRs (12 up-regulated and 10 down-regulated) in OSA patients. Enriched predicted target pathways included senescence, adherens junction, and AGE-RAGE/TNF-α/HIF-1α signaling. In the validation cohort, miR-92b-3p and miR-15b-5p gene expressions were decreased in OSA patients, and negatively correlated with an apnea hypopnea index. PTGS1 (COX1) gene expression was increased in OSA patients, especially in those with depression. Transfection with miR-15b-5p/miR-92b-3p mimic in vitro reversed IHR-induced early apoptosis, reactive oxygen species production, MAOA hyperactivity, and up-regulations of their predicted target genes, including PTGS1, ADRB1, GABRB2, GARG1, LEP, TNFSF13B, VEGFA, and CXCL5. The luciferase assay revealed the suppressed PTGS1 expression by miR-92b-3p. Down-regulated miR-15b-5p/miR-92b-3p in OSA patients could contribute to IHR-induced oxidative stress and MAOA hyperactivity through the eicosanoid inflammatory pathway via directly targeting PTGS1-NF-κB-SP1 signaling. Over-expression of the miR-15b-5p/miR-92b-3p may be a new therapeutic strategy for OSA-related depression.

20.
Sci Rep ; 11(1): 20697, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667186

RESUMO

The aim of this study is to determine the roles of global histone acetylation (Ac)/methylation (me), their modifying enzymes, and gene-specific histone enrichment in obstructive sleep apnea (OSA). Global histone modifications, and their modifying enzyme expressions were assessed in peripheral blood mononuclear cells from 56 patients with OSA and 16 matched subjects with primary snoring (PS). HIF-1α gene promoter-specific H3K36Ac enrichment was assessed in another cohort (28 OSA, 8 PS). Both global histone H3K23Ac and H3K36Ac expressions were decreased in OSA patients versus PS subjects. H3K23Ac expressions were further decreased in OSA patients with prevalent hypertension. HDAC1 expressions were higher in OSA patients, especially in those with excessive daytime sleepiness, and reduced after more than 6 months of continuous positive airway pressure treatment. H3K79me3 expression was increased in those with high C-reactive protein levels. Decreased KDM6B protein expressions were noted in those with a high hypoxic load, and associated with a higher risk for incident cardiovascular events or hypertension. HIF-1α gene promoter-specific H3K36Ac enrichment was decreased in OSA patients versus PS subjects. In vitro intermittent hypoxia with re-oxygenation stimuli resulted in HDAC1 over-expression and HIF-1α gene promoter-specific H3K36Ac under-expression, while HDAC1 inhibitor, SAHA, reversed oxidative stress through inhibiting NOX1. In conclusions, H3K23/H3K36 hypoacetylation is associated with the development of hypertension and disease severity in sleep-disordered breathing patients, probably through up-regulation of HDAC1, while H3K79 hypermethylation is associated with higher risk of cardiovascular diseases, probably through down-regulation of KDM6B.


Assuntos
Histona Desacetilase 1/genética , Histonas/genética , Apneia Obstrutiva do Sono/genética , Regulação para Cima/genética , Acetilação , Adulto , Proteína C-Reativa/genética , Estudos de Casos e Controles , Estudos de Coortes , Pressão Positiva Contínua nas Vias Aéreas/métodos , Metilação de DNA/genética , Distúrbios do Sono por Sonolência Excessiva/genética , Feminino , Humanos , Hipóxia/genética , Histona Desmetilases com o Domínio Jumonji/genética , Leucócitos Mononucleares/fisiologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 1/genética , Polissonografia/métodos , Regiões Promotoras Genéticas/genética , Síndromes da Apneia do Sono/genética , Ronco/genética , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...