Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 7(42): 17778-85, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26456716

RESUMO

Coaxial electrospinning was used to fabricate two types of core-shell fibers: the first type with liquid resin monomer in the core and polyacrylonitrile in the shell, and the second type with liquid curing agent in the core and polyacrylonitrile in the shell. These two types of core-shell fibers were mutually entangled and embedded into two flexible transparent matrices thus forming transparent flexible self-healing composite materials. Such materials could be formed before only using emulsion electrospinning, rather than coaxial electrospinning. The self-healing properties of such materials are associated with release of healing agents (resin monomer and cure) from nanofiber cores in damaged locations with the subsequent polymerization reaction filing the micro-crack with polydimethylsiloxane. Transparency of these materials is measured and the anti-corrosive protection provided by them is demonstrated in electrochemical experiments.

2.
ACS Appl Mater Interfaces ; 6(16): 13657-66, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25017392

RESUMO

The effect of the supersonically blown below-74 nm nanofibers on cooling of high-temperature surfaces is studied experimentally and theoretically. The ultrathin supersonically blown nanofibers were deposited and then copper-plated, while their surfaces resembled those of the thorny-devil nanofibers. Here, we study for the first time the enhancement of surface cooling in gas in the cases of the forced and natural convection with the help of ultrathin thorny-devil nanofibers. These polymer core-metal shell nanofibers in nanometric scale possess a relatively high thickness of the metal shell and a high effective thermal conductivity, which facilitates heat transfer. The additional surface temperature reduction close to 5 °C in the case of the forced convection in the impinging air jet and close to 17 °C in the case of the natural convection was achieved. Correspondingly, an increase in the value of the heat transfer coefficient of about 41% in the forced convection, and about 20% in the natural convection was achieved due to the presence of the thorny devil electrospun and/or supersonically blown nanofibers.

3.
ACS Appl Mater Interfaces ; 6(13): 10461-8, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24884204

RESUMO

In this work, we developed novel self-healing anticorrosive hierarchical coatings that consist of several components. Namely, as a skeleton we prepared a core-shell nanofiber mat electrospun from emulsions of cure material (dimethyl methylhydrogen siloxane) in a poly(acrylonitrile) (PAN) solution in dimethylformamide. In these nanofibers, cure is in the core, while PAN is in the shell. The skeleton deposited on a protected surface is encased in an epoxy-based matrix, which contains emulsified liquid droplets of dimethylvinyl-terminated dimethylsiloxane resin monomer. When such hierarchical coatings are damaged, cure is released from the nanofiber cores and the resin monomer, released from the damaged matrix, is polymerized in the presence of cure. This polymerization and solidification process takes about 1-2 days and eventually heals the damaged material when solid poly(dimethylsiloxane) resin is formed. The self-healing effect was demonstrated using an electrochemical analogue of the scanning vibrating electrode technique. Damaged samples were left for 2 days. After that, the electric current through a damaged coating was found to be negligibly small for the samples with self-healing properties. On the other hand, for the samples without self-healing properties, the electric current was significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA