Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 11(9): 971-986, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35881077

RESUMO

Potency analysis of mesenchymal stromal cells (MSCs) is required for their use in advanced clinical trials. Assay matrix strategy evaluating more than a single property of MSCs is an emerging strategy in potency analysis. Here we developed an assay matrix approach focusing on the secretory chemokine responses of MSCs using multiplex analytical method. MSCs' innate fitness in secreting matrix of chemokines is correlated with their metabolic fitness in differential degrees. In addition, innately secreting chemokines are correlated among themselves in a unique pattern. MSC's matrix chemokine responses to exogenous stimulation of IFNγ and/or TNFα are distinct. However, the combination of IFNγ and TNFα is superior than individual stimulations in eliciting robust and broad matrix chemokine responses of MSCs. Correlation matrix analysis has identified that chemokine responses to IFNγ and/or TNFα display unique correlative secretion patterns. MSC and peripheral blood mononuclear cells coculture analysis has identified the correlation matrix responses of chemokines that predicted immune suppression. In addition, MSC-mediated blocking of T-cell proliferation predominantly correlates with chemokines in an inverse manner. Knockdown of chemokines has demonstrated that MSC-sourced inherent chemokines do not actively play a role in T-cell suppression and thus are the bystander predictors of T-cell suppression. The present analysis of MSC's matrix chemokine responses can be deployed in the advanced potency analysis of MSCs.


Assuntos
Células-Tronco Mesenquimais , Fator de Necrose Tumoral alfa , Medula Óssea , Células da Medula Óssea , Proliferação de Células , Quimiocinas/metabolismo , Humanos , Leucócitos Mononucleares , Fator de Necrose Tumoral alfa/metabolismo
2.
Curr Stem Cell Rep ; 8(2): 72-92, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502223

RESUMO

Purpose of Review: Cryopreservation and its associated freezing and thawing procedures-short "freeze-thawing"-are among the final steps in economically viable manufacturing and clinical application of diverse cellular therapeutics. Translation from preclinical proof-of-concept studies to larger clinical trials has indicated that these processes may potentially present an Achilles heel to optimal cell product safety and particularly efficacy in clinical trials and routine use. Recent Findings: We review the current state of the literature on how cryopreservation of cellular therapies has evolved and how the application of this technique to different cell types is interlinked with their ability to engraft and function upon transfer in vivo, in particular for hematopoietic stem and progenitor cells (HSPCs), their progeny, and therapeutic cell products derived thereof. We also discuss pros and cons how this may differ for non-hematopoietic mesenchymal stromal/stem cell (MSC) therapeutics. We present different avenues that may be crucial for cell therapy optimization, both, for hematopoietic (e.g., effector, regulatory, and chimeric antigen receptor (CAR)-modified T and NK cell based products) and for non-hematopoietic products, such as MSCs and induced pluripotent stem cells (iPSCs), to achieve optimal viability, recovery, effective cell dose, and functionality of the cryorecovered cells. Summary: Targeted research into optimizing the cryopreservation and freeze-thawing routines and the adjunct manufacturing process design may provide crucial advantages to increase both the safety and efficacy of cellular therapeutics in clinical use and to enable effective market deployment strategies to become economically viable and sustainable medicines.

3.
Front Cell Dev Biol ; 9: 715905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869307

RESUMO

B7 family proteins serve as checkpoint molecules that protect tumors from T cell mediated lysis. Tryptophan degrading enzymes indoleamine 2,3 dioxygenase (IDO) and tryptophan 2,3 dioxygenase (TDO) also induce T cell immune tolerance. However, little is known about the relative contribution of B7 molecules, tryptophan degrading enzymes, as well as the impact of tumor and stromal cell interactions to the development of immunosuppressive tumor microenvironment. To investigate such interactions, we used a tripartite model of human hepatocellular carcinoma cell line (HepG2) and mesenchymal stromal cells (MSCs) co-cultured with peripheral blood mononuclear cells (PBMCs). Co-culture of HepG2 cells and activated PBMCs demonstrate that HepG2 cells undergo PBMC mediated cytolysis, despite constitutive expression of B7-H3 and upregulation of PD-L1 by IFNγ. Knockdown of B7-H3, PD-L1 or IDO does not modulate PBMC mediated lysis of HepG2 cells. However, TNFα preactivation enhances lysis of HepG2 cells, and blocking of TNFα production from PBMCs protects HepG2 cells. On the other hand, MSCs protect HepG2 cells from PBMC mediated lysis, even in the presence of TNFα. Further investigation showed that MSC mediated protection is associated with the unique secretome profile of upregulated and downregulated cytokines and chemokines. IFNγ activated MSCs are superior to TNFα activated or control MSCs in protecting HepG2 cells. Blockade of IFNγ driven IDO activity completely abolishes the ability of MSCs to protect HepG2 cells from cytolysis by PBMCs. These results suggest that inhibition of IFNγ activation of IDO induction in stromal cells, combined with usage of TNFα, could be a novel immunotherapeutic strategy to induce regression of hepatocellular carcinoma.

4.
Transplant Cell Ther ; 27(5): 389.e1-389.e10, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33965175

RESUMO

Ruxolitinib is a JAK2/JAK1 inhibitor that blocks the inflammatory JAK-STAT signaling pathway. Ruxolitinib has been demonstrated to be effective in the treatment of steroid-resistant acute graft-versus-host disease (GVHD). Ruxolitinib's effect on inflammatory cells of hematopoietic origin is known. However, its effect on nonhematopoietic cell types with immune-modulating and antigen-presenting cell competency plausibly involved in pathogenesis of GVHD has not been explored. Mesenchymal stromal cells (MSCs) are CD45- nonhematopoietic cells of the bone marrow with immune modulatory functions in vivo. MSCs' immunobiology largely depends on their responsiveness to IFNγ. We aimed to define the effect of ruxolitinib on the immunobiology of MSCs that are modulated by IFNγ. Human bone marrow derived MSCs, peripheral blood mononuclear cells (PBMCs), and primary bone marrow aspirates were analyzed for their sensitivity to ruxolitinib-mediated blocking of IFNγ-induced STAT-1 phosphorylation and downstream effector molecules, utilizing Western blot, flow cytometry, secretome analysis, and phosflow techniques. IFNγ-induced cytostatic effects on MSCs are reversed by ruxolitinib. Ruxolitinib inhibits IFNγ and secretome of activated peripheral PBMC-induced STAT-1 phosphorylation on human bone marrow derived MSCs. In addition, ruxolitinib inhibits IFNγ-induced pro-GVHD pathways on MSCs, which includes HLAABC(MHCI), HLADR(MHCII), CX3CL1, and CCL2. IFNγ-induced immunosuppressive molecules IDO and PDL-1 were also inhibited by ruxolitinib on MSCs. Comparative analysis with PBMCs has demonstrated that MSCs are as equal as to HLADR+ PBMC populations in responding to ruxolitinib-mediated inhibition of IFNγ-induced STAT-1 phosphorylation. Ex vivo analysis of human marrow aspirates has demonstrated that ruxolitinib blocks IFNγ-induced STAT-1 phosphorylation in CD45+/-HLADR+/- populations at different levels, which is depending on their sensitivity to IFNγ responsiveness. These results inform the hypothesis that ruxolitinib's immune-modulatory effects in vivo may pharmacologically involve marrow and tissue-resident MSCs. Ruxolitinib affects the immunobiology of MSCs equivalent to professional HLADR+ antigen presenting cells, which collectively mitigate GVHD.


Assuntos
Células-Tronco Mesenquimais , Medula Óssea , Proliferação de Células , Humanos , Leucócitos Mononucleares , Nitrilas , Pirazóis , Pirimidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA