Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tomography ; 5(2): 239-247, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31245545

RESUMO

Intrarenal hypoxia develops within a few days after the onset of insulinopenic diabetes in an experimental animal model (ie, a model of type-1 diabetes). Although diabetes-induced hypoxia results in increased renal lactate formation, mitochondrial function is well maintained, a condition commonly referred to as pseudohypoxia. However, the metabolic effects of significantly elevated lactate levels remain unclear. We therefore investigated in diabetic animals the response to acute intrarenal hypoxia in the presence of high renal lactate formation to delineate mechanistic pathways and compare these findings to healthy control animals. Hyperpolarized 13C-MRI and blood oxygenation level-dependent 1H-MRI was used to investigate the renal metabolism of [1-13C]pyruvate and oxygenation following acutely altered oxygen content in the breathing gas in a streptozotocin rat model of type-1 diabetes with and without insulin treatment and compared with healthy control rats. The lactate signal in the diabetic kidney was reduced by 12%-16% during hypoxia in diabetic rats irrespective of insulin supplementation. In contrast, healthy controls displayed the well-known Pasteur effect manifested as a 10% increased lactate signal following reduction of oxygen in the inspired air. Reduced expression of the monocarboxyl transporter-4 may account for altered response to hypoxia in diabetes with a high intrarenal pyruvate-to-lactate conversion. Reduced intrarenal lactate formation in response to hypoxia in diabetes shows the existence of a different metabolic phenotype, which is independent of insulin, as insulin supplementation was unable to affect the pyruvate-to-lactate conversion in the diabetic kidney.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hipóxia/patologia , Rim/diagnóstico por imagem , Rim/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Doença Aguda , Animais , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Feminino , Rim/patologia , Ratos , Ratos Wistar
3.
Magn Reson Med ; 78(3): 1131-1135, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27690362

RESUMO

PURPOSE: To study hyperpolarized water as an angiography and perfusion tracer in a large animal model. METHODS: Protons dissolved in deuterium oxide (D2 O) were hyperpolarized in a SPINlab dissolution dynamic nuclear polarization (dDNP) polarizer and subsequently investigated in vivo in a pig model at 3 Tesla (T). Approximately 15 mL of hyperpolarized water was injected in the renal artery by hand over 4-5 s. RESULTS: A liquid state polarization of 5.3 ± 0.9% of 3.8 M protons in 15 mL of deuterium oxide was achieved with a T1 of 24 ± 1 s. This allowed injection through an arterial catheter into the renal artery and subsequently high-contrast imaging of the entire kidney parenchyma over several seconds. The dynamic images allow quantification of tissue perfusion, with a mean cortical perfusion of 504 ± 123 mL/100 mL/min. CONCLUSION: Hyperpolarized water MR imaging was successfully demonstrated as a renal angiography and perfusion method. Quantitative perfusion maps of the kidney were obtained in agreement with literature and control experiments with gadolinium contrast. Magn Reson Med 78:1131-1135, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Óxido de Deutério/química , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Angiografia por Ressonância Magnética/métodos , Imagem de Perfusão/métodos , Animais , Óxido de Deutério/administração & dosagem , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Suínos
4.
J Magn Reson ; 274: 65-72, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27889650

RESUMO

We demonstrate a method for the preparation of hyperpolarized water by dissolution Dynamic Nuclear Polarization at high magnetic field. Protons were polarized at 6.7T and 1.1K to >70% with frequency modulated microwave irradiation at 188GHz. 97.2±0.7% of the radical was extracted from the sample in the dissolution in a two-phase system. 16±1mL of 5.0M 1H in D2O with a polarization of 13.0±0.9% in the liquid state was obtained, corresponding to an enhancement factor of 4000±300 compared to the thermal equilibrium at 9.4T and 293K. A longitudinal relaxation time constant of 16±1s was measured. The sample was polarized and dissolved in a fluid path compatible with clinical polarizers. The volume of hyperpolarized water produced by this method enables angiography and perfusion measurements in large animals, as well as NMR experiments for studies of e.g. proton exchange and polarization transfer to other nuclei.

5.
J Magn Reson ; 272: 141-146, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27693965

RESUMO

Signal enhancement by hyperpolarization is a way of overcoming the low sensitivity in magnetic resonance; MRI in particular. One of the most well-known methods, dissolution Dynamic Nuclear Polarization, has been used clinically in cancer patients. One way of ensuring a low bioburden of the hyperpolarized product is by use of a closed fluid path that constitutes a barrier to contamination. The fluid path can be filled with the pharmaceuticals, i.e. imaging agent and solvents, in a clean room, and then stored or immediately used at the polarizer. In this study, we present a method of filling the fluid path that allows it to be reused. The filling method has been investigated in terms of reproducibility at two extrema, high dose for patient use and low dose for rodent studies, using [1-13C]pyruvate as example. We demonstrate that the filling method allows high reproducibility of six quality control parameters with standard deviations 3-10 times smaller than the acceptance criteria intervals in clinical studies.

6.
Curr Pharm Des ; 22(1): 90-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26548307

RESUMO

Magnetic resonance angiography (MRA) is a non-invasive technology that can be used for diagnosis and monitoring of cardiovascular disease; the number one cause of mortality worldwide. Hyperpolarized imaging agents provide signal enhancement of more than 10, 000 times, which implies large reduction in acquisition time and improved spatial resolution. We review the role of hyperpolarized 13C agents for MR angiography and present the literature in the field. Furthermore, we present a study of the benefit of intra-arterial injection over intravenous injection of hyperpolarized agent for cerebral angiography in the rat, and compare the performance of two standard angiographic pulse sequences, the gradient echo (GRE) sequence and the balanced steady-state free precession (bSSFP). 2D coronal cerebral angiographies using intra-arterial injections were acquired with a GRE sequence with in-plane resolution of 0.27 mm and matrix size 256x128, and 2D coronal cerebral angiographies were acquired with a bSSFP sequence with in-plane resolution of 0.55 mm and matrix size 128x64. The bSSFP sequence provides higher SNR in phantoms than the GRE sequence. Similarly, intravenous injections are imaged with higher SNR with the bSSFP sequence, where the signal destruction of the GRE sequence is avoided. However, for intra-arterial injections, the bSSFP sequence results in strong artefacts, and the GRE sequence is preferred. Hyperpolarized MRA presents many challenges and cannot currently compete with conventional contrast enhanced MRA. Further research may change this since hyperpolarization is still an immature methodology.


Assuntos
Doenças Cardiovasculares/patologia , Cérebro/diagnóstico por imagem , Animais , Isótopos de Carbono/administração & dosagem , Cérebro/patologia , Meios de Contraste/administração & dosagem , Humanos , Processamento de Imagem Assistida por Computador , Injeções Intra-Arteriais , Injeções Intravenosas , Angiografia por Ressonância Magnética , Masculino , Cintilografia , Ratos , Ratos Sprague-Dawley
7.
Physiol Rep ; 2(12)2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25501426

RESUMO

Good glycemic control is crucial to prevent the onset and progression of late diabetic complications, but insulin treatment often fails to achieve normalization of glycemic control to the level seen in healthy controls. In fact, recent experimental studies indicate that insufficient treatment with insulin, resulting in poor glycemic control, has an additional effect on progression of late diabetic complications, than poor glycemic control on its own. We therefore compared renal metabolic alterations during conditions of poor glycemic control with and without suboptimal insulin administration, which did not restore glycemic control, to streptozotocin (STZ)-diabetic rats using noninvasive hyperpolarized (13)C-pyruvate magnetic resonance imaging (MRI) and blood oxygenation level-dependent (BOLD) (1)H-MRI to determine renal metabolic flux and oxygen availability, respectively. Suboptimal insulin administration increased pyruvate utilization and metabolic flux via both anaerobic and aerobic pathways in diabetic rats even though insulin did not affect kidney oxygen availability, HbA1c, or oxidative stress. These results imply direct effects of insulin in the regulation of cellular substrate utilization and metabolic fluxes during conditions of poor glycemic control. The study demonstrates that poor glycemic control in combination with suboptimal insulin administration accelerates metabolic alterations by increasing both anaerobic and aerobic metabolism resulting in increased utilization of energy substrates. The results demonstrate the importance of tight glycemic control in insulinopenic diabetes, and that insulin, when administered insufficiently, adds an additional burden on top of poor glycemic control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...