Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(6): 063510, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243542

RESUMO

Divertor detachment and alternative divertor magnetic geometries are predicted to be promising approaches to handle the power exhaust of future fusion devices. In order to understand the detachment process caused by volumetric losses in alternative divertor magnetic geometries, a Multi-Wavelength Imaging (MWI) diagnostic has recently been designed and built for the Mega Amp Spherical Tokamak Upgrade. The MWI diagnostic will simultaneously capture 11 spectrally filtered images of the visible light emitted from divertor plasmas and provide crucial knowledge for the interpretation of observations and modeling efforts. This paper presents the optical design, mechanical design, hardware, and test results of an 11-channel MWI system with a field of view of 40°. The optical design shows better than 5 mm FWHM spatial resolution at the plasma on all 11 channels across the whole field of view. The spread of angle of incidence on the surface of each filter is also analyzed to inform the bandwidth specification of the interference filters. The results of the initial laboratory tests demonstrate that a spatial resolution of better than 5 mm FWHM is achieved for all 11 channels, meeting the specifications required for accurate tomography.

2.
Rev Sci Instrum ; 90(4): 043504, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31043003

RESUMO

Ray-tracing techniques are applied to filtered divertor imaging, a diagnostic that has long suffered from artifacts due to the polluting effect of reflected light in metal walled fusion machines. Physically realistic surface reflections were modeled using a Cook-Torrance micro-facet bi-directional reflection distribution function applied to a high resolution mesh of the vessel geometry. In the absence of gonioreflectometer measurements, a technique was developed to fit the free parameters of the Cook-Torrance model against images of the JET in-vessel light sources. By coupling this model with high fidelity plasma fluid simulations, photo-realistic renderings of a number of tokamak plasma emission scenarios were generated. Finally, a sensitivity matrix describing the optical coupling of a JET divertor camera and the emission profile of the plasma was obtained, including full reflection effects. These matrices are used to perform inversions on measured data and shown to reduce the level of artifacts in inverted emission profiles.

3.
Rev Sci Instrum ; 89(8): 083506, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30184695

RESUMO

Ray-tracing techniques are applied to bolometry, a diagnostic where the finite collection volume is particularly sensitive to the machine and detector configuration. A technique is presented that can handle arbitrarily complex aperture and collimator geometries, neglecting reflection effects. Sight lines from the ASDEX Upgrade bolometer foils were ray-traced with a path tracing algorithm, where the optical path is represented by a statistical bundle of ray paths connecting the foil surface with the slit geometry. By using the full 3D machine model for the detector box and first wall, effects such as occlusion and vignetting were included in the calculation of the bolometer's étendue. Inversion matrices calculated with the ray-tracing technique were compared with the more conventional single-ray approach and shown to be naturally more constrained, requiring less regularisation. The two models were tested on a sample radiation scenario, and the common single-ray approximation is shown to be insufficient. These results are particularly relevant for the divertor where strong emission gradients may be present. The technique developed generalises well to arbitrarily complex viewing geometries and collimators, opening up a new design space for bolometer configurations that might not normally have been considered.

4.
Rev Sci Instrum ; 87(2): 023504, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26931846

RESUMO

Mitigation of the intense heat flux to the divertor is one of the outstanding problems in fusion energy. One technique that has shown promise is impurity seeding, i.e., the injection of low-Z gaseous impurities (typically N2 or Ne) to radiate and dissipate the power before it arrives to the divertor target plate. To this end, the Alcator C-Mod team has created a first-of-its-kind feedback system to control the injection of seed gas based on real-time surface heat flux measurements. Surface thermocouples provide real-time measurements of the surface temperature response to the plasma heat flux. The surface temperature measurements are inputted into an analog computer that "solves" the 1-D heat transport equation to deliver accurate, real-time signals of the surface heat flux. The surface heat flux signals are sent to the C-Mod digital plasma control system, which uses a proportional-integral-derivative (PID) algorithm to control the duty cycle demand to a pulse width modulated piezo valve, which in turn controls the injection of gas into the private flux region of the C-Mod divertor. This paper presents the design and implementation of this new feedback system as well as initial results using it to control divertor heat flux.

5.
Rev Sci Instrum ; 84(9): 093505, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24094058

RESUMO

A novel charge-exchange recombination spectroscopy (CXRS) diagnostic method is presented, which uses a simple thermal gas puff for its donor neutral source, instead of the typical high-energy neutral beam. This diagnostic, named gas puff CXRS (GP-CXRS), is used to measure ion density, velocity, and temperature in the tokamak edge/pedestal region with excellent signal-background ratios, and has a number of advantages to conventional beam-based CXRS systems. Here we develop the physics basis for GP-CXRS, including the neutral transport, the charge-exchange process at low energies, and effects of energy-dependent rate coefficients on the measurements. The GP-CXRS hardware setup is described on two separate tokamaks, Alcator C-Mod and ASDEX Upgrade. Measured spectra and profiles are also presented. Profile comparisons of GP-CXRS and a beam based CXRS system show good agreement. Emphasis is given throughout to describing guiding principles for users interested in applying the GP-CXRS diagnostic technique.

6.
Rev Sci Instrum ; 81(10): 10E111, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033976

RESUMO

An ion sensitive probe (ISP) is developed as a robust diagnostic for measuring plasma potentials (Φ(P)) in magnetized plasmas. The ISP relies on the large difference between the ion and electron gyroradii (ρ(i)/ρ(e)∼60) to reduce the electron collection at a collector recessed behind a separately biased wall distance ∼ρ(i). We develop a new ISP method to measure the plasma potential that is independent of the precise position and shape of the collector. Φ(P) is found as the wall potential when charged current to the probe collector vanishes during the voltage sweep. The plasma potentials obtained from the ISP match Φ(P) measured with an emissive probe over a wide range of plasma conditions in a small magnetized plasma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...