Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(23): 232701, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298878

RESUMO

The ^{23}Al(p,γ)^{24}Si reaction is among the most important reactions driving the energy generation in type-I x-ray bursts. However, the present reaction-rate uncertainty limits constraints on neutron star properties that can be achieved with burst model-observation comparisons. Here, we present a novel technique for constraining this important reaction by combining the GRETINA array with the neutron detector LENDA coupled to the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The ^{23}Al(d,n) reaction was used to populate the astrophysically important states in ^{24}Si. This enables a measurement in complete kinematics for extracting all relevant inputs necessary to calculate the reaction rate. For the first time, a predicted close-lying doublet of a 2_{2}^{+} and (4_{1}^{+},0_{2}^{+}) state in ^{24}Si was disentangled, finally resolving conflicting results from two previous measurements. Moreover, it was possible to extract spectroscopic factors using GRETINA and LENDA simultaneously. This new technique may be used to constrain other important reaction rates for various astrophysical scenarios.

2.
Phys Rev Lett ; 118(17): 172501, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28498679

RESUMO

The (^{10}Be,^{10}B^{*}[1.74 MeV]) charge-exchange reaction at 100 AMeV is presented as a new probe for isolating the isovector (ΔT=1) nonspin-transfer (ΔS=0) response of nuclei, with ^{28}Si being the first nucleus studied. By using a secondary ^{10}Be beam produced by fast fragmentation of ^{18}O nuclei at the NSCL Coupled Cyclotron Facility, applying the dispersion-matching technique with the S800 magnetic spectrometer to determine the excitation energy in ^{28}Al, and performing high-resolution γ-ray tracking with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) to identify the 1022-keV γ ray associated with the decay from the 1.74-MeV T=1 isobaric analog state in ^{10}B, a ΔS=0 excitation-energy spectrum in ^{28}Al was extracted. Monopole and dipole contributions were determined through a multipole-decomposition analysis, and the isovector giant dipole resonance and isovector giant monopole resonance (IVGMR) were identified. The results show that this probe is a powerful tool for studying the elusive IVGMR, which is of interest for performing stringent tests of modern density functional theories at high excitation energies and for constraining the bulk properties of nuclei and nuclear matter. The extracted distributions were compared with theoretical calculations based on the normal-modes formalism and the proton-neutron relativistic time-blocking approximation. Calculated cross sections based on these strengths underestimate the data by about a factor of 2, which likely indicates deficiencies in the reaction calculations based on the distorted wave Born approximation.

3.
Phys Rev Lett ; 112(25): 252501, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014806

RESUMO

The Gamow-Teller strength in the ß(+) direction to (46)Sc was extracted via the (46)Ti(t,(3)He + γ) reaction at 115 MeV/u. The γ-ray coincidences served to precisely measure the very weak Gamow-Teller transition to a final state at 991 keV. Although this transition is weak, it is crucial for accurately estimating electron-capture rates in astrophysical scenarios with relatively low stellar densities and temperatures, such as presupernova stellar evolution. Shell-model calculations with different effective interactions in the pf shell-model space do not reproduce the experimental Gamow-Teller strengths, which is likely due to sd-shell admixtures. Calculations in the quasiparticle random phase approximation that are often used in astrophysical simulations also fail to reproduce the experimental Gamow-Teller strength distribution, leading to strongly overestimated electron-capture rates. Because reliable theoretical predictions of Gamow-Teller strengths are important for providing astrophysical electron-capture reaction rates for a broad set of nuclei in the lower pf shell, we conclude that further theoretical improvements are required to match astrophysical needs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...