Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37266578

RESUMO

In embryonal rhabdomyosarcoma (ERMS) and generally in sarcomas, the role of wild-type and loss- or gain-of-function TP53 mutations remains largely undefined. Eliminating mutant or restoring wild-type p53 is challenging; nevertheless, understanding p53 variant effects on tumorigenesis remains central to realizing better treatment outcomes. In ERMS, >70% of patients retain wild-type TP53, yet mutations when present are associated with worse prognosis. Employing a kRASG12D-driven ERMS tumor model and tp53 null (tp53-/-) zebrafish, we define wild-type and patient-specific TP53 mutant effects on tumorigenesis. We demonstrate that tp53 is a major suppressor of tumorigenesis, where tp53 loss expands tumor initiation from <35% to >97% of animals. Characterizing three patient-specific alleles reveals that TP53C176F partially retains wild-type p53 apoptotic activity that can be exploited, whereas TP53P153Δ and TP53Y220C encode two structurally related proteins with gain-of-function effects that predispose to head musculature ERMS. TP53P153Δ unexpectedly also predisposes to hedgehog-expressing medulloblastomas in the kRASG12D-driven ERMS-model.


Assuntos
Neoplasias Cerebelares , Rabdomiossarcoma Embrionário , Animais , Carcinogênese , Mutação , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Rabdomiossarcoma Embrionário/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
J Med Case Rep ; 15(1): 102, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33663601

RESUMO

BACKGROUND: Extranodal NK/T cell lymphoma (ENKTL) is an aggressive form of Epstein-Barr virus (EBV)-associated non-Hodgkin's lymphoma which historically has a poor prognosis. When relapse occurs, particularly in the cerebral nervous system (CNS), survival is rare. The immune checkpoint pathway family of proteins is highly expressed in many human tumors, especially in EBV-related malignancies. To the best of our knowledge, there are no reports of immune checkpoint inhibitors used either alone or in combination for the treatment of ENTKL CNS relapse, yet there are promising results in metastatic CNS involvement of other malignancies. CASE PRESENTATION: This is the case of a 29-year-old Hispanic male with ENKTL who was treated at first relapse with 24 doses of the programmed death-ligand 1 (PD-L1) immune checkpoint inhibitor, atezolizumab, over a 17-month period. He remained in remission for 18 months until he experienced an isolated CNS relapse and on-going evidence of chronic EBV infection. Salvage therapy was provided as a combination of triple intrathecal (TIT) chemotherapy, radiation, and atezolizumab. He continues on maintenance atezolizumab and remains alive 1-year post CNS relapse. CONCLUSIONS: The results from this case suggest that atezolizumab should be considered as part of the treatment regimen for relapsed ENKTL. They also demonstrate the benefit of using atezolizumab in combination with TIT chemotherapy and radiation as a viable treatment option for ENKTL CNS relapse and indicate that atezolizumab is an option for long-term maintenance therapy for patients with ENKTL.


Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Extranodal de Células T-NK , Adulto , Anticorpos Monoclonais Humanizados , Herpesvirus Humano 4 , Humanos , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/radioterapia , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Sistema Nervoso
4.
Int J Biochem Cell Biol ; 41(10): 1989-2004, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19703659

RESUMO

Alzheimer's disease (AD) and cerebrovascular accidents are two leading causes of age-related dementia. Increasing evidence supports the idea that chronic hypoperfusion is primarily responsible for the pathogenesis that underlies both disease processes. In this regard, hypoperfusion appears to induce oxidative stress (OS), which is largely due to reactive oxygen species (ROS), and over time initiates mitochondrial failure which is known as an initiating factor of AD. Recent evidence indicates that chronic injury stimulus induces hypoperfusion seen in vulnerable brain regions. This reduced regional cerebral blood flow (CBF) then leads to energy failure within the vascular endothelium and associated brain parenchyma, manifested by damaged mitochondrial ultrastructure (the formation of large number of immature, electron-dense "hypoxic" mitochondria) and by overproduction of mitochondrial DNA (mtDNA) deletions. Additionally, these mitochondrial abnormalities co-exist with increased redox metal activity, lipid peroxidation, and RNA oxidation. Interestingly, vulnerable neurons and glial cells show mtDNA deletions and oxidative stress markers only in the regions that are closely associated with damaged vessels, and, moreover, brain vascular wall lesions linearly correlate with the degree of neuronal and glial cell damage. We summarize the large body of evidence which indicates that sporadic, late-onset AD results from a vascular etiology by briefly reviewing mitochondrial damage and vascular risk factors associated with the disease and then we discuss the cerebral microvascular changes reason for the energy failure that occurs in normal aging and, to a much greater extent, AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Mitocôndrias/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/etiologia , Animais , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
5.
Neurotox Res ; 16(3): 293-305, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19526276

RESUMO

Nitric oxide (NO) is an important regulatory molecule for the host defense that plays a fundamental role in the cardiovascular, immune, and nervous systems. NO is synthesized through the conversion of L-arginine to L-citrulline by the enzyme NO synthase (NOS), which is found in three isoforms classified as neuronal (nNOS), inducible (iNOS), and endothelial (eNOS). Recent evidence supports the theory that this bioactive molecule has an influential role in the disruption of normal brain and vascular homeostasis, a condition known to elucidate chronic hypoperfusion which ultimately causes the development of brain lesions and the pathology that typify Alzheimer disease (AD). In addition, vascular NO activity appears to be a major contributor to this pathology before any overexpression of NOS isoforms is observed in the neuron, glia, and microglia of the brain tree, where the overexpression the NOS isoforms causes the formation of a large amount of NO. We hypothesize that since an imbalance between the NOS isoforms and endothelin-1 (ET-1), a human gene that encodes for blood vessel constriction, can cause antioxidant system insufficiency; by using pharmacological intervention with NO donors and/or NO suppressors, the brain lesions and the downstream progression of brain pathology and dementia in AD should be delayed or minimized.


Assuntos
Doença de Alzheimer , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Óxido Nítrico/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Doenças Cardiovasculares/fisiopatologia , Progressão da Doença , Endotelina-1/metabolismo , Humanos , Óxido Nítrico Sintase/classificação , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...