Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(38): 10866-10875, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34546760

RESUMO

The current unprecedented coronavirus pandemic (COVID-19) is increasingly demanding advanced materials and new technologies to protect us and inactivate SARS-CoV-2. In this research work, we report the manufacture of Ag3PO4 (AP)/polypropylene (PP) composites using a simple method and also reveal their long-term anti-SARS-CoV-2 activity. This composite shows superior antibacterial (against Staphylococcus aureus and Escherichia coli) and antifungal activity (against Candida albicans), thus having potential for a variety of technological applications. The as-manufactured materials were characterized by XRD, Raman spectroscopy, FTIR spectroscopy, AFM, UV-vis spectroscopy, rheology, SEM, and contact angle to confirm their structural integrity. Based on the results of first-principles calculations at the density functional level, a plausible reaction mechanism for the initial events associated with the generation of both hydroxyl radical •OH and superoxide radical anion •O2- in the most reactive (110) surface of AP was proposed. AP/PP composites proved to be an attractive avenue to provide human beings with a broad spectrum of biocide activity.


Assuntos
COVID-19 , Polipropilenos , Humanos , Saúde Pública , SARS-CoV-2 , Staphylococcus aureus
2.
RSC Adv ; 10(51): 30640-30649, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35516045

RESUMO

Over the years, the possibility of using solar radiation in photocatalysis or photodegradation processes has attracted remarkable interest from scientists around the world. In such processes, due to its electronic properties, Ag3PO4 is one of the most important semiconductors. This work delves into the photocatalytic activity, stability, and reactivity of Ag3PO4 surfaces by comparing plane waves with projector augmented wave and localized Gaussian basis set simulations, at the atomic level. The results indicate that the (110) surface, in agreement with previous experimental reports, displays the most suitable characteristics for photocatalytic activity due to its high reactivity, i.e. the presence of a large amount of undercoordinated Ag cations and a high value work function. Beyond the innovative results, this work shows a good synergy between both kinds of DFT approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...