Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Aging Cell ; 22(6): e13824, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947105

RESUMO

Numerous alterations in CD8+ T cells contribute to impaired immune responses in elderly individuals. However, the discrimination between cell-intrinsic dysfunctions and microenvironmental changes is challenging. TCR transgenic OT-I mice are utilized to investigate CD8+ T-cell immunity, but their immunodeficient phenotype hampers their use especially in aging. Here, we demonstrate that using a heterozygous OT-I model minimizes the current limitations and provides a valuable tool to assess antigen-specific T-cell responses even at old age. We analyzed phenotypic and functional characteristics of CD8+ T cells from OT-I+/+ and OT-I+/- mice to prove the applicability of the heterozygous system. Our data reveal that OVA-activated CD8+ T cells from adult OT-I+/- mice proliferate, differentiate, and exert cytolytic activity equally to their homozygous counterparts. Moreover, common age-related alterations in CD8+ T cells, including naive T-cell deterioration and decreased proliferative capacity, also occur in elderly OT-I+/- mice, indicating the wide range of applications for in vivo and in vitro aging studies. We used the OT-I+/- model to investigate cell-intrinsic alterations affecting the cytotoxic behavior of aged CD8+ T cells after antigen-specific in vitro activation. Time-resolved analysis of antigen-directed target cell lysis confirmed previous observations that the cytotoxic capacity of CD8+ T cells increases with age. Surprisingly, detailed single cell analysis revealed that transcriptional upregulation of perforin in aged CD8+ T cells shifts the mode of target cell death from granzyme-mediated apoptosis to rapid induction of necrosis. This unexpected capability might be beneficial or detrimental for the aging host and requires detailed evaluation.


Assuntos
Antígenos , Linfócitos T CD8-Positivos , Camundongos , Animais , Camundongos Transgênicos , Regulação para Cima , Necrose , Camundongos Endogâmicos C57BL , Ovalbumina
3.
Aging Cell ; 21(8): e13668, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35818124

RESUMO

A variety of intrinsic and extrinsic factors contribute to the altered efficiency of CTLs in elderly organisms. In particular, the efficacy of antiviral CD8+ T cells responses in the elderly has come back into focus since the COVID-19 pandemic outbreak. However, the exact molecular mechanisms leading to alterations in T cell function and the origin of the observed impairments have not been fully explored. Therefore, we investigated whether intrinsic changes affect the cytotoxic ability of CD8+ T cells in aging. We focused on the different subpopulations and time-resolved quantification of cytotoxicity during tumor cell elimination. We report a surprising result: Killing kinetics of CD8+ T cells from elderly mice are much faster than those of CD8+ T cells from adult mice. This is true not only in the total CD8+ T cell population but also for their effector (TEM ) and central memory (TCM ) T cell subpopulations. TIRF experiments reveal that CD8+ T cells from elderly mice possess comparable numbers of fusion events per cell, but significantly increased numbers of cells with granule fusion. Analysis of the cytotoxic granule (CG) content shows significantly increased perforin and granzyme levels and turns CD8+ T cells of elderly mice into very efficient killers. This highlights the importance of distinguishing between cell-intrinsic alterations and microenvironmental changes in elderly individuals. Our results also stress the importance of analyzing the dynamics of CTL cytotoxicity against cancer cells because, with a simple endpoint lysis analysis, cytotoxic differences could have easily been overlooked.


Assuntos
COVID-19 , Neoplasias , Animais , Linfócitos T CD8-Positivos , Citotoxicidade Imunológica , Granzimas , Humanos , Glicoproteínas de Membrana , Camundongos , Pandemias , Perforina , Proteínas Citotóxicas Formadoras de Poros
4.
Cells ; 11(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406753

RESUMO

Plasma membrane protein channels provide a passageway for ions to access the intracellular milieu. Rapid entry of calcium ions into cells is controlled mostly by ion channels, while Ca2+-ATPases and Ca2+ exchangers ensure that cytosolic Ca2+ levels ([Ca2+]cyt) are maintained at low (~100 nM) concentrations. Some channels, such as the Ca2+-release-activated Ca2+ (CRAC) channels and voltage-dependent Ca2+ channels (CACNAs), are highly Ca2+-selective, while others, including the Transient Receptor Potential Melastatin (TRPM) family, have broader selectivity and are mostly permeable to monovalent and divalent cations. Activation of CRAC channels involves the coupling between ORAI1-3 channels with the endoplasmic reticulum (ER) located Ca2+ store sensor, Stromal Interaction Molecules 1-2 (STIM1/2), a pathway also termed store-operated Ca2+ entry (SOCE). The TRPM family is formed by 8 members (TRPM1-8) permeable to Mg2+, Ca2+, Zn2+ and Na+ cations, and is activated by multiple stimuli. Recent studies indicated that SOCE and TRPM structure-function are interlinked in some instances, although the molecular details of this interaction are only emerging. Here we review the role of TRPM and SOCE in Ca2+ handling and highlight the available evidence for this interaction.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Proteína ORAI1/metabolismo
5.
EMBO Rep ; 23(3): e53135, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942054

RESUMO

Alternative splicing is a potent modifier of protein function. Stromal interaction molecule 1 (Stim1) is the essential activator of store-operated Ca2+ entry (SOCE) triggering activation of transcription factors. Here, we characterize Stim1A, a splice variant with an additional 31 amino acid domain inserted in frame within its cytosolic domain. Prominent expression of exon A is found in astrocytes, heart, kidney, and testes. Full-length Stim1A functions as a dominant-negative regulator of SOCE and ICRAC, facilitating sequence-specific fast calcium-dependent inactivation and destabilizing gating of Orai channels. Downregulation or absence of native Stim1A results in increased SOCE. Despite reducing SOCE, Stim1A leads to increased NFAT translocation. Differential proteomics revealed an interference of Stim1A with the cAMP-SOCE crosstalk by altered modulation of phosphodiesterase 8 (PDE8), resulting in reduced cAMP degradation and increased PIP5K activity, facilitating NFAT activation. Our study uncovers a hitherto unknown mechanism regulating NFAT activation and indicates that cell-type-specific splicing of Stim1 is a potent means to regulate the NFAT signalosome and cAMP-SOCE crosstalk.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L958-L968, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33759577

RESUMO

Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Neutrófilos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Pulmão/patologia , Macrófagos Alveolares/patologia , Masculino , Camundongos , Neutrófilos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/patologia
7.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374304

RESUMO

Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.


Assuntos
Envelhecimento/imunologia , Canais de Cálcio/imunologia , Sinalização do Cálcio/imunologia , Cálcio/imunologia , Homeostase/imunologia , Linfócitos T/imunologia , Animais , Humanos
8.
Aging (Albany NY) ; 12(4): 3266-3286, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32062611

RESUMO

Ca2+ is a crucial second messenger for proper T cell function. Considering the relevance of Ca2+ signals for T cell functionality it is surprising that no mechanistic insights into T cell Ca2+ signals from elderly individuals are reported. The main Ca2+ entry mechanism in T cells are STIM-activated Orai channels. Their role during lymphocyte aging is completely unknown. Here, we report not only reduced Ca2+ signals in untouched and stimulated, but also in central and effector memory CD8+ T cells from elderly (18-24 months) compared to adult (3-6 months) mice. Two mechanisms contribute to the overall reduction in Ca2+ signals of CD8+ T cells of elderly mice: 1) Reduced Ca2+ currents through Orai channels due to decreased expressions of STIMs and Orais. 2) A faster extrusion of Ca2+ owing to an increased expression of PMCA4. The reduced Ca2+ signals correlated with a resistance of the cytotoxic efficiency of CD8+ T cells to varying free [Ca2+]ext with age. In summary, reduced STIM/Orai expression and increased Ca2+ clearing rates following enhanced PMCA4 expression contribute to reduced Ca2+ signals in CD8+ T cells of elderly mice. These changes are apparently relevant to immune function as they reduce the Ca2+ dependency of CTL cytotoxicity.


Assuntos
Envelhecimento/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Sinalização do Cálcio/fisiologia , Proteína ORAI1/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Camundongos , Proteína ORAI1/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Molécula 1 de Interação Estromal/genética
9.
Sci Rep ; 9(1): 10353, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316109

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with neutrophilic lung inflammation and CD8 T cell exhaustion and is an important risk factor for the development of non-small cell lung cancer (NSCLC). The clinical response to programmed cell death-1 (PD-1) blockade in NSCLC patients is variable and likely affected by a coexisting COPD. The pro-inflammatory cytokine interleukin-17C (IL-17C) promotes lung inflammation and is present in human lung tumors. Here, we used a Kras-driven lung cancer model to examine the function of IL-17C in inflammation-promoted tumor growth. Genetic ablation of Il-17c resulted in a decreased recruitment of inflammatory cells into the tumor microenvironment, a decreased expression of tumor-promoting cytokines (e.g. interleukin-6 (IL-6)), and a reduced tumor proliferation in the presence of Haemophilus influenzae- (NTHi) induced COPD-like lung inflammation. Chronic COPD-like inflammation was associated with the expression of PD-1 in CD8 lymphocytes and the membrane expression of the programmed death ligand (PD-L1) independent of IL-17C. Tumor growth was decreased in Il-17c deficient mice but not in wildtype mice after anti-PD-1 treatment. Our results suggest that strategies targeting innate immune mechanisms, such as blocking of IL-17C, may improve the response to anti-PD-1 treatment in lung cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunidade Inata , Interleucina-17/fisiologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Citocinas/fisiologia , Feminino , Genes ras , Humanos , Interleucina-17/deficiência , Interleucina-17/genética , Interleucina-17/farmacologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neutrófilos/fisiologia , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/genética , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/imunologia , Proteínas Recombinantes/farmacologia , Microambiente Tumoral
10.
Cancers (Basel) ; 11(4)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935064

RESUMO

The tumor microenvironment (TME) is shaped by cancer and noncancerous cells, the extracellular matrix, soluble factors, and blood vessels. Interactions between the cells, matrix, soluble factors, and blood vessels generate this complex heterogeneous microenvironment. The TME may be metabolically beneficial or unbeneficial for tumor growth, it may favor or not favor a productive immune response against tumor cells, or it may even favor conditions suited to hijacking the immune system for benefitting tumor growth. Soluble factors relevant for TME include oxygen, reactive oxygen species (ROS), ATP, Ca2+, H⁺, growth factors, or cytokines. Ca2+ plays a prominent role in the TME because its concentration is directly linked to cancer cell proliferation, apoptosis, or migration but also to immune cell function. Stromal-interaction molecules (STIM)-activated Orai channels are major Ca2+ entry channels in cancer cells and immune cells, they are upregulated in many tumors, and they are strongly regulated by ROS. Thus, STIM and Orai are interesting candidates to regulate cancer cell fate in the TME. In this review, we summarize the current knowledge about the function of ROS and STIM/Orai in cancer cells; discuss their interdependencies; and propose new hypotheses how TME, ROS, and Orai channels influence each other.

11.
Cell Calcium ; 73: 40-52, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880196

RESUMO

TRPM3 proteins assemble to Ca2+-permeable cation channels in the plasma membrane, which act as nociceptors of noxious heat and mediators of insulin and cytokine release. Here we show that TRPM3 channel activity is strongly dependent on intracellular Ca2+. Conceivably, this effect is attributed to the Ca2+ binding protein calmodulin, which binds to TRPM3 in a Ca2+-dependent manner. We identified five calmodulin binding sites within the amino terminus of TRPM3, which displayed different binding affinities in dependence of Ca2+. Mutations of lysine residues in calmodulin binding site 2 strongly reduced calmodulin binding and TRPM3 activity indicating the importance of this domain for TRPM3-mediated Ca2+ signaling. Our data show that TRPM3 channels are regulated by intracellular Ca2+ and provide the basis for a mechanistic understanding of the regulation of TRPM3 by calmodulin.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Calmodulina/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fotólise/efeitos dos fármacos , Canais de Cátion TRPM/genética
12.
Cell Mol Life Sci ; 75(16): 3069-3078, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29500477

RESUMO

The melastatin-related transient receptor potential member 7 (TRPM7) is a unique fusion protein with both ion channel function and enzymatic α-kinase activity. TRPM7 is essential for cellular systemic magnesium homeostasis and early embryogenesis; it promotes calcium transport during global brain ischemia and emerges as a key player in cancer growth. TRPM7 channels are negatively regulated through G-protein-coupled receptor-stimulation, either by reducing cellular cyclic adenosine monophosphate (cAMP) or depleting phosphatidylinositol bisphosphate (PIP2) levels in the plasma membrane. We here identify that heterologous overexpression of human TRPM7-K1648R mutant will lead to disruption of protease or purinergic receptor-induced calcium release. The disruption occurs at the level of Gq, which requires intact TRPM7 kinase phosphorylation activity for orderly downstream signal transduction to activate phospholipase (PLC)ß and cause calcium release. We propose that this mechanism may support limiting GPCR-mediated calcium signaling in times of insufficient cellular ATP supply.


Assuntos
Cálcio/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPM/metabolismo , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Mutação de Sentido Incorreto , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética , Trombina/farmacologia
13.
J Physiol ; 596(14): 2681-2698, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29368348

RESUMO

KEY POINTS: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to eliminate cancer cells. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity and found that in particular CTLs have a very low optimum of [Ca2+ ]i (between 122 and 334 nm) and [Ca2+ ]o (between 23 and 625 µm) for efficient cancer cell elimination, well below blood plasma Ca2+ levels. As predicted from these results, partial down-regulation of the Ca2+ channel Orai1 in CTLs paradoxically increases perforin-dependent cancer cell killing. Lytic granule release at the immune synapse between CTLs and cancer cells has a Ca2+ optimum compatible with this low Ca2+ optimum for efficient cancer cell killing, whereas the Ca2+ optimum for CTL migration is slightly higher and proliferation increases monotonously with increasing [Ca2+ ]o . We propose that a partial inhibition of Ca2+ signals by specific Orai1 blockers at submaximal concentrations could contribute to tumour elimination. ABSTRACT: Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells are required to protect the human body against cancer. Ca2+ is a key metabolic factor for lymphocyte function and cancer homeostasis. We analysed the Ca2+ dependence of CTL and NK cell cytotoxicity against cancer cells and found that CTLs have a bell-shaped Ca2+ dependence with an optimum for cancer cell elimination at rather low [Ca2+ ]o (23-625 µm) and [Ca2+ ]i (122-334 nm). This finding predicts that a partial inhibition of Orai1 should increase (rather than decrease) cytotoxicity of CTLs at [Ca2+ ]o higher than 625 µm. We tested this hypothesis in CTLs and indeed found that partial down-regulation of Orai1 by siRNA increases the efficiency of cancer cell killing. We found two mechanisms that may account for the Ca2+ optimum of cancer cell killing: (1) migration velocity and persistence have a moderate optimum between 500 and 1000 µm [Ca2+ ]o in CTLs, and (2) lytic granule release at the immune synapse between CTLs and cancer cells is increased at 146 µm compared to 3 or 800 µm, compatible with the Ca2+ optimum for cancer cell killing. It has been demonstrated in many cancer cell types that Orai1-dependent Ca2+ signals enhance proliferation. We propose that a decrease of [Ca2+ ]o or partial inhibition of Orai1 activity by selective blockers in the tumour microenvironment could efficiently reduce cancer growth by simultaneously increasing CTL and NK cell cytotoxicity and decreasing cancer cell proliferation.


Assuntos
Apoptose , Cálcio/metabolismo , Proliferação de Células , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Movimento Celular , Grânulos Citoplasmáticos/metabolismo , Humanos , Neoplasias/metabolismo , Perforina/metabolismo , Células Tumorais Cultivadas
14.
Sci Signal ; 9(418): ra26, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26956485

RESUMO

In phagocytes, pathogen recognition is followed by Ca(2+) mobilization and NADPH oxidase 2 (NOX2)-mediated "oxidative burst," which involves the rapid production of large amounts of reactive oxygen species (ROS). We showed that ORAI Ca(2+) channels control store-operated Ca(2+) entry, ROS production, and bacterial killing in primary human monocytes. ROS inactivate ORAI channels that lack an ORAI3 subunit. Staphylococcal infection of mice reduced the expression of the gene encoding the redox-sensitive Orai1 and increased the expression of the gene encoding the redox-insensitive Orai3 in the lungs or in bronchoalveolar lavages. A similar switch from ORAI1 to ORAI3 occurred in primary human monocytes exposed to bacterial peptides in culture. These alterations in ORAI1 and ORAI3 abundance shifted the channel assembly toward a more redox-insensitive configuration. Accordingly, silencing ORAI3 increased the redox sensitivity of the channel and enhanced oxidation-induced inhibition of NOX2. We generated a mathematical model that predicted additional features of the Ca(2+)-redox interplay. Our results identified the ORAI-NOX2 feedback loop as a determinant of monocyte immune responses.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/imunologia , Cálcio/imunologia , Modelos Biológicos , Monócitos/imunologia , Pneumonia Estafilocócica/imunologia , Espécies Reativas de Oxigênio/imunologia , Staphylococcus aureus/imunologia , Animais , Cálcio/metabolismo , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Monócitos/metabolismo , Monócitos/patologia , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/imunologia , NADPH Oxidases/metabolismo , Oxirredução , Pneumonia Estafilocócica/genética , Pneumonia Estafilocócica/metabolismo , Pneumonia Estafilocócica/patologia , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/metabolismo
15.
Cold Spring Harb Protoc ; 2014(6): 630-7, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890203

RESUMO

Although ICRAC and other store-operated currents are often analyzed by Ca(2+) imaging, whole-cell patch clamp, described here, is the preferred technique to analyze ICRAC whenever possible. The whole-cell patch-clamp protocol can even be used to record endogenous ICRAC in primary cells. The small endogenous current size of ICRAC requires some precautions: First, it is important to inhibit potential interferences from other channels in the cell by carefully choosing the combination of pipette and bath solutions. Second, the noise should be <150 fA root mean square (RMS) when the pipette holder (with its wire) with or without a patch pipette is adjusted over (but not in!) the solution using a high amplification gain (50 mV/pA or higher) of the patch-clamp amplifier. In addition, this protocol draws attention to measures that should be considered when recording ICRAC currents from an overexpression system. This protocol also suggests sets of solutions that can be used for distinguishing ICRAC from potentially interfering currents. In addition to the solutions, the identity of ICRAC can be confirmed by the characteristic inward rectification, its high Ca(2+) selectivity, and the reversal potential of more than +50 mV. A few (mostly nonspecific) CRAC channel blockers are known, which can also be applied for characterization purposes.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Técnicas de Patch-Clamp/métodos , Animais , Células Cultivadas , Humanos
16.
Cold Spring Harb Protoc ; 2014(6): 638-42, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890204

RESUMO

Endogenous calcium release-activated channel (CRAC) currents are usually quite small and not always easy to measure using the patch-clamp technique. While we have, for instance, successfully recorded very small CRAC currents in primary human effector T cells, we have not yet managed to record CRAC in naïve primary human T cells. Many groups, including ours, therefore use Ca(2+) imaging technologies to analyze CRAC-dependent Ca(2+) influx. However, Ca(2+) signals are quite complex and depend on many different transporter activities; thus, it is not trivial to make quantitative statements about one single transporter, in this case CRAC channels. Therefore, a detailed patch-clamp analysis of ICRAC is always preferred. Since many laboratories use Ca(2+) imaging for ICRAC analysis, we detail here the minimal requirements for reliable measurements. Ca(2+) signals not only depend on the net Ca(2+) influx through CRAC channels but also depend on other Ca(2+) influx mechanisms, K(+) channels or Cl(-) channels (which determine the membrane potential), Ca(2+) export mechanisms like plasma membrane Ca(2+) ATPase (PMCA), sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) or Na(+)-Ca(2+) exchangers, and (local) Ca(2+) buffering often by mitochondria. In this protocol, we summarize a set of experiments that allow (quantitative) statements about CRAC channel activity using Ca(2+) imaging experiments, including the ability to rule out Ca(2+) signals from other sources.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Imagem Óptica/métodos , Animais , Células Cultivadas , Humanos
17.
Cold Spring Harb Protoc ; 2014(6): 602-7, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24890214

RESUMO

Depletion of internal Ca(2+) stores activates store-operated Ca(2+) channels. The most prominent members of this class of channels are Ca(2+) release-activated Ca(2+) (CRAC) channels, which are present in a variety of cell types including immune cells. CRAC channels are composed of ORAI proteins, which are activated by endoplasmic reticulum-bound STIM proteins on Ca(2+) store depletion. The underlying Ca(2+) current is called ICRAC, which is required for many cellular functions including T-cell activation, mast cell activation, Ca(2+)-dependent gene expression, and refilling of internal Ca(2+) stores. To analyze ICRAC or the Ca(2+) current through heterologously expressed ORAI channels, whole-cell patch clamp is the technique of choice. It allows the direct analysis of ion currents through CRAC/ORAI channels. The patch-clamp technique has been used to determine selectivity, permeability, rectification, inactivation, and several other biophysical and pharmacological properties of the channels, and is the most direct and reliable technique to analyze ICRAC.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Técnicas de Patch-Clamp/métodos
18.
Cell Mol Life Sci ; 70(15): 2757-71, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23471296

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a divalent-selective cation channel fused to an atypical α-kinase. TRPM7 is a key regulator of cell growth and proliferation, processes accompanied by mandatory cell volume changes. Osmolarity-induced cell volume alterations regulate TRPM7 through molecular crowding of solutes that affect channel activity, including magnesium (Mg(2+)), Mg-nucleotides and a further unidentified factor. Here, we assess whether chloride and related halides can act as negative feedback regulators of TRPM7. We find that chloride and bromide inhibit heterologously expressed TRPM7 in synergy with intracellular Mg(2+) ([Mg(2+)]i) and this is facilitated through the ATP-binding site of the channel's kinase domain. The synergistic block of TRPM7 by chloride and Mg(2+) is not reversed during divalent-free or acidic conditions, indicating a change in protein conformation that leads to channel inactivation. Iodide has the strongest inhibitory effect on TRPM7 at physiological [Mg(2+)]i. Iodide also inhibits endogenous TRPM7-like currents as assessed in MCF-7 breast cancer cells, where upregulation of SLC5A5 sodium-iodide symporter enhances iodide uptake and inhibits cell proliferation. These results indicate that chloride could be an important factor in modulating TRPM7 during osmotic stress and implicate TRPM7 as a possible molecular mechanism contributing to the anti-proliferative characteristics of intracellular iodide accumulation in cancer cells.


Assuntos
Trifosfato de Adenosina/metabolismo , Brometos/farmacologia , Cloretos/farmacologia , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica/fisiologia , Iodetos/farmacologia , Canais de Cátion TRPM/metabolismo , Brometos/metabolismo , Proliferação de Células/efeitos dos fármacos , Cloretos/metabolismo , DNA Complementar/biossíntese , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Iodetos/metabolismo , Células MCF-7 , Técnicas de Patch-Clamp , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Simportadores/metabolismo , Canais de Cátion TRPM/fisiologia
19.
J Physiol ; 591(6): 1433-45, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23359669

RESUMO

Abstract Agonist-induced Ca(2+) oscillations in many cell types are triggered by Ca(2+) release from intracellular stores and driven by store-operated Ca(2+) entry. Stromal cell-interaction molecule (STIM) 1 and STIM2 serve as endoplasmic reticulum Ca(2+) sensors that, upon store depletion, activate Ca(2+) release-activated Ca(2+) channels (Orai1-3, CRACM1-3) in the plasma membrane. However, their relative roles in agonist-mediated Ca(2+) oscillations remain ambiguous. Here we report that while both STIM1 and STIM2 contribute to store-refilling during Ca(2+) oscillations in mast cells (RBL), T cells (Jurkat) and human embryonic kidney (HEK293) cells, they do so dependent on the level of store depletion. Molecular silencing of STIM2 by siRNA or inhibition by G418 suppresses store-operated Ca(2+) entry and agonist-mediated Ca(2+) oscillations at low levels of store depletion, without interfering with STIM1-mediated signals induced by full store depletion. Thus, STIM2 is preferentially activated by low-level physiological agonist concentrations that cause mild reductions in endoplasmic reticulum Ca(2+) levels. We conclude that with increasing agonist concentrations, store-operated Ca(2+) entry is mediated initially by endogenous STIM2 and incrementally by STIM1, enabling differential modulation of Ca(2+) entry over a range of agonist concentrations and levels of store depletion.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/genética , Drosophila , Retículo Endoplasmático/metabolismo , Inativação Gênica , Gentamicinas/farmacologia , Células HEK293 , Humanos , Mastócitos/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , RNA Interferente Pequeno , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal , Linfócitos T/metabolismo
20.
J Biol Chem ; 287(44): 36663-72, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22961981

RESUMO

TRPM3 channels form ionotropic steroid receptors in the plasma membrane of pancreatic ß and dorsal root ganglion cells and link steroid hormone signaling to insulin release and pain perception, respectively. We identified and compared the function of a number of TRPM3 splice variants present in mouse, rat and human tissues. We found that variants lacking a region of 18 amino acid residues display neither Ca(2+) entry nor ionic currents when expressed alone. Hence, splicing removes a region that is indispensable for channel function, which is called the ICF region. TRPM3 variants devoid of this region (TRPM3ΔICF), are ubiquitously present in different tissues and cell types where their transcripts constitute up to 15% of the TRPM3 isoforms. The ICF region is conserved throughout the TRPM family, and its presence in TRPM8 proteins is also necessary for function. Within the ICF region, 10 amino acid residues form a domain essential for the formation of operative TRPM3 channels. TRPM3ΔICF variants showed reduced interaction with other TRPM3 isoforms, and their occurrence at the cell membrane was diminished. Correspondingly, coexpression of ΔICF proteins with functional TRPM3 subunits not only reduced the number of channels but also impaired TRPM3-mediated Ca(2+) entry. We conclude that TRPM3ΔICF variants are regulatory channel subunits fine-tuning TRPM3 channel activity.


Assuntos
Processamento Alternativo , Canais de Cátion TRPM/genética , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Sequência Conservada , Éxons , Células HEK293 , Humanos , Imunoprecipitação , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , Ratos , Homologia de Sequência de Aminoácidos , Canais de Cátion TRPM/química , Canais de Cátion TRPM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...