Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6202018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31844333

RESUMO

The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects. Hence, this core is an ideal target to study the structure and chemistry of the first objects formed in the collapse of prestellar cores. We present ALMA Band 6 spectral line observations at ~0.6″ of angular resolution towards Barnard 1b. We have extracted the spectra towards both protostars, and used a Local Thermodynamic Equilibrium (LTE) model to reproduce the observed line profiles. B1b-S shows rich and complex spectra, with emission from high energy transitions of complex molecules, such as CH3OCOH and CH3CHO, including vibrational level transitions. We have tentatively detected for the first time in this source emission from NH2CN, NH2CHO, CH3CH2OH, CH2OHCHO, CH3CH2OCOH and both aGg' and gGg' conformers of (CH2OH)2. This is the first detection of ethyl formate (CH3CH2OCOH) towards a low-mass star forming region. On the other hand, the spectra of the FHSC candidate B1b-N are free of COMs emission. In order to fit the observed line profiles in B1b-S, we used a source model with two components: an inner hot and compact component (200 K, 0.35″) and an outer and colder one (60 K, 0.6″). The resulting COM abundances in B1b-S range from 10-13 for NH2CN and NH2CHO, up to 10-9 for CH3OCOH. Our ALMA Band 6 observations reveal the presence of a compact and hot component in B1b-S, with moderate abundances of complex organics. These results indicate that a hot corino is being formed in this very young Class 0 source.

2.
Astron Astrophys ; 6062017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29093600

RESUMO

The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We present 40"×70" images of Barnard 1b in the 13CO 1→0, C18O 1→0, NH2D 11,1a→10,1s, and SO 32→21 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of ∼500 au. The two protostellar objects are embedded in an elongated condensation, with a velocity gradient of ∼0.2-0.4 m s-1 au-1 in the east-west direction, reminiscent of an axial collapse. The NH2D data reveal cold and dense pseudo-disks (R∼500-1000 au) around each protostar. Moreover, we observe evidence of pseudo-disk rotation around B1b-S. We do not see any signature of the bipolar outflows associated with B1b-N and B1b-S, which were previously detected in H2CO and CH3OH, in any of the imaged species. The non-detection of SO constrains the SO/CH3OH abundance ratio in the high-velocity gas.

3.
Astron Astrophys ; 6062017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29142329

RESUMO

AIMS: The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. METHODS: We present 0.06 - 0.1 ″ resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. RESULTS: The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35″ radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2″ resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars.

4.
Astrophys J ; 832(1)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31844334

RESUMO

We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the HIFI instrument aboard the Herschel Space Observatory, covering the frequency range 480 to 1900 GHz. We detect 685 spectral lines with S/N > 3σ, originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, & V LSR ). We find evidence for three different cloud components: a cool (T ex ~ 20 - 40 K), spatially extended (> 60″), and quiescent (ΔVFWHM ~ 4 km s -1) component; a warmer (T ex ~ 80 - 100 K), less spatially extended (~ 30″), and dynamic (ΔVFWHM ~ 8 km s -1) component, which is likely affected by embedded outflows; and a kinematically distinct region (T ex > 100 K; V LSR ~ 8 km s -1), dominated by emission from species which trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct "hot core" component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.

5.
Astrophys J ; 812(1)2015 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-26568638

RESUMO

We present the first ~7.5'×11.5' velocity-resolved (~0.2 km s-1) map of the [C ii] 158 µm line toward the Orion molecular cloud 1 (OMC 1) taken with the Herschel/HIFI instrument. In combination with far-infrared (FIR) photometric images and velocity-resolved maps of the H41α hydrogen recombination and CO J=2-1 lines, this data set provides an unprecedented view of the intricate small-scale kinematics of the ionized/PDR/molecular gas interfaces and of the radiative feedback from massive stars. The main contribution to the [C ii] luminosity (~85 %) is from the extended, FUV-illuminated face of the cloud (G0>500, nH>5×103 cm-3) and from dense PDRs (G≳104, nH≳105 cm-3) at the interface between OMC 1 and the H ii region surrounding the Trapezium cluster. Around ~15 % of the [C ii] emission arises from a different gas component without CO counterpart. The [C ii] excitation, PDR gas turbulence, line opacity (from [13C ii]) and role of the geometry of the illuminating stars with respect to the cloud are investigated. We construct maps of the L[C ii]/LFIR and LFIR/MGas ratios and show that L[C ii]/LFIR decreases from the extended cloud component (~10-2-10-3) to the more opaque star-forming cores (~10-3-10-4). The lowest values are reminiscent of the "[C ii] deficit" seen in local ultra-luminous IR galaxies hosting vigorous star formation. Spatial correlation analysis shows that the decreasing L[C ii]/LFIR ratio correlates better with the column density of dust through the molecular cloud than with LFIR/MGas. We conclude that the [C ii] emitting column relative to the total dust column along each line of sight is responsible for the observed L[C ii]/LFIR variations through the cloud.

6.
Philos Trans A Math Phys Eng Sci ; 370(1978): 5174-85, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23028164

RESUMO

The Herschel-guaranteed time key programme PRobing InterStellar Molecules with Absorption line Studies (PRISMAS)(1) is providing a survey of the interstellar hydrides containing the elements C, O, N, F and Cl. As the building blocks of interstellar molecules, hydrides provide key information on their formation pathways. They can also be used as tracers of important physical and chemical properties of the interstellar gas that are difficult to measure otherwise. This paper presents an analysis of two sight-lines investigated by the PRISMAS project, towards the star-forming regions W49N and W51. By combining the information extracted from the detected spectral lines, we present an analysis of the physical properties of the diffuse interstellar gas, including the electron abundance, the fraction of gas in molecular form, and constraints on the cosmic ray ionization rate and the gas density.

7.
Science ; 292(5520): 1339-43, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11359003

RESUMO

The gas activity of comet C/1999 S4 (LINEAR) was monitored at radio wavelengths during its disruption. A runaway fragmentation of the nucleus may have begun around 18 July 2000 and proceeded until 23 July. The mass in small icy debris (

8.
Appl Opt ; 37(12): 2185-98, 1998 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-18273141

RESUMO

We present accurately calibrated submillimeter atmospheric transmission spectra obtained with a Fourier-transform spectrometer at the Caltech Submillimeter Observatory on Mauna Kea, Hawaii. These measurements cover the 0.9-0.3-mm wavelength range and are the first in a series aimed at defining the terrestrial long-wave atmospheric transmission curve. The 4.1-km altitude of the Mauna Kea site provides access to extremely low zenith water-vapor columns, permitting atmospheric observations at frequencies well above those possible from sea level. We describe the calibration procedures, present our first well-calibrated transmission spectra, and compare our results with those of a single-layer atmospheric transmission model, AT. With an empirical best-fit continuum opacity term included, this simple single-layer model provides a remarkably good fit to the opacity data for H(2)O line profiles described by either van Vleck-Weisskopf or kinetic shapes.

9.
Nature ; 383(6599): 418-20, 1996 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-8837771

RESUMO

Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.


Assuntos
Meio Ambiente Extraterreno , Cianeto de Hidrogênio/análise , Meteoroides , Congelamento , Gelo , Análise Espectral
10.
Appl Opt ; 35(34): 6629-40, 1996 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21151241

RESUMO

We constructed a 24-pixel bolometer camera operating in the 350- and 450-µm atmospheric windows for the Caltech Submillimeter Observatory (CSO). This instrument uses a monolithic silicon bolometer array that is cooled to approximately 300 mK by a single-shot (3)He refrigerator. First-stage amplification is provided by field-effect transistors at approximately 130 K. The sky is imaged onto the bolometer array by means of several mirrors outside the Dewar and a cold off-axis elliptical mirror inside the cryostat. The beam is defined by cold aperture and field stops, which eliminates the need for any condensing horns. We describe the instrument, present measurements of the physical properties of the bolometer array, describe the performance of the electronics and the data-acquisition system, and demonstrate the sensitivity of the instrument operating at the observatory. Approximate detector noise at 350 µm is 5 × 10(-15) W/√Hz, referenced to the entrance of the Dewar, and the CSO system noise-equivalent flux density is approximately 4 Jy/√Hz. These values are within a factor of 2.5 of the background limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...