Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38591448

RESUMO

Star copolymer films were produced by using spin-coating, drop-casting, and casting deposition techniques, thus obtaining ultrathin and thick films, respectively. The morphology is generally flat, but it becomes substrate-dependent for ultrathin films where the planarization effect of films is not efficient. The indentation hardness of films was investigated by Force Volume Maps in both the air and liquid. In the air, ultrathin films are in the substrate-dominated zone and, thus, the elastic modulus E is overestimated, while E reaches its bulk value for drop-casted ultrathin and thick films. In liquid (water), E follows an exponential decay for all films with a minimum soaked time t0 of 0.37 and 2.65 h for ultrathin and drop-casted ultrathin and thick films, respectively. After this time, E saturates to a value on average 92% smaller than that measured in the air due to film swelling. Such results support the role of film morphology in the antimicrobial activity envisaged in the literature, suggesting also an additional role of film hardness.

2.
Small ; 19(42): e2303238, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37330652

RESUMO

Graphene and related 2D material (GRM) thin films consist of 3D assembly of billions of 2D nanosheets randomly distributed and interacting via van der Waals forces. Their complexity and the multiscale nature yield a wide variety of electrical characteristics ranging from doped semiconductor to glassy metals depending on the crystalline quality of the nanosheets, their specific structural organization ant the operating temperature. Here, the charge transport (CT) mechanisms are studied that are occurring in GRM thin films near the metal-insulator transition (MIT) highlighting the role of defect density and local arrangement of the nanosheets. Two prototypical nanosheet types are compared, i.e., 2D reduced graphene oxide and few-layer-thick electrochemically exfoliated graphene flakes, forming thin films with comparable composition, morphology and room temperature conductivity, but different defect density and crystallinity. By investigating their structure, morphology, and the dependence of their electrical conductivity on temperature, noise and magnetic-field, a general model is developed describing the multiscale nature of CT in GRM thin films in terms of hopping among mesoscopic bricks, i.e., grains. The results suggest a general approach to describe disordered van der Waals thin films.

3.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364061

RESUMO

We herein address the problem of polymorph selection by introducing a general and straightforward concept based on their ordering. We demonstrated the concept by the ordered patterning of four compounds capable of forming different polymorphs when deposited on technologically relevant surfaces. Our approach exploits the fact that, when the growth of a crystalline material is confined within sufficiently small cavities, only one of the possible polymorphs is generated. We verify our method by utilizing several model compounds to fabricate micrometric "logic patterns" in which each of the printed pixels is easily identifiable as comprising only one polymorph and can be individually accessed for further operations.

4.
Dalton Trans ; 51(28): 10787-10798, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35726732

RESUMO

Electroreduction of carbon dioxide represents an appealing strategy to rethink a waste product as a valuable feedstock for the formation of value-added compounds. Among the metal electrodes able to catalyze such processes, copper plays a central role due to its rich chemistry. Strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying/post-functionalization with heterometals. In this contribution, we report on straightforward electrochemical methods for the formation of nanostructured Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction in aqueous environment, leading to the selective production of syngas, whose composition varies upon changing the applied bias and indium content. In particular, gaseous mixtures compatible with the synthesis of methanol or aldehydes (i.e. respectively with 1 : 2 and 1 : 1 CO/H2 ratios) are produced at low (i.e. -0.62 V vs. RHE) applied bias with >3.5 mA cm-2 current densities (in absolute value). Even if the proposed cathodes undergo structural modifications upon prolonged exposure to CO2 reduction conditions, their catalytic activity can be restored by introducing an additional In(III) precursor to the electrolytic solution.

5.
Small ; 18(16): e2106403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35274455

RESUMO

Energy-storage materials can be assembled directly on the electrodes of a battery using electrochemical methods, this allowing sequential deposition, high structural control, and low cost. Here, a two-step approach combining electrophoretic deposition (EPD) and cathodic electrodeposition (CED) is demonstrated to fabricate multilayer hierarchical electrodes of reduced graphene oxide (rGO) and mixed transition metal sulfides (NiCoMnSx ). The process is performed directly on conductive electrodes applying a small electric bias to electro-deposit rGO and NiCoMnSx in alternated cycles, yielding an ideal porous network and a continuous path for transport of ions and electrons. A fully rechargeable alkaline battery (RAB) assembled with such electrodes gives maximum energy density of 97.2 Wh kg-1 and maximum power density of 3.1 kW kg-1 , calculated on the total mass of active materials, and outstanding cycling stability (retention 72% after 7000 charge/discharge cycles at 10 A g-1 ). When the total electrode mass of the cell is considered, the authors achieve an unprecedented gravimetric energy density of 68.5 Wh kg-1 , sevenfold higher than that of typical commercial supercapacitors, higher than that of Ni/Cd or lead-acid Batteries and similar to Ni-MH Batteries. The approach can be used to assemble multilayer composite structures on arbitrary electrode shapes.

6.
Adv Mater ; 33(13): e2007870, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33629772

RESUMO

Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low-frequency (

7.
Nanoscale Adv ; 3(2): 353-358, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36131734

RESUMO

Monoatomic nanosheets can form 2-dimensional channels with tunable chemical properties, for ion storage and filtering applications. Here, we demonstrate transport of K+, Na+, and Li+ cations and F- and Cl- anions on the centimeter scale in graphene oxide membranes (GOMs), triggered by an electric bias. Besides ion transport, the GOM channels foster also the aggregation of the selected ions in salt crystals, whose composition is not the same as that of the pristine salt present in solution, highlighting the difference between the chemical environment in the 2D channels and in bulk solutions.

8.
ACS Appl Mater Interfaces ; 12(39): 44017-44025, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880164

RESUMO

Humidity sensors have been gaining increasing attention because of their relevance for well-being. To meet the ever-growing demand for new cost-efficient materials with superior performances, graphene oxide (GO)-based relative humidity sensors have emerged recently as low-cost and highly sensitive devices. However, current GO-based sensors suffer from important drawbacks including slow response and recovery, as well as poor stability. Interestingly, reduced GO (rGO) exhibits higher stability, yet accompanied by a lower sensitivity to humidity due to its hydrophobic nature. With the aim of improving the sensing performances of rGO, here we report on a novel generation of humidity sensors based on a simple chemical modification of rGO with hydrophilic moieties, i.e., triethylene glycol chains. Such a hybrid material exhibits an outstandingly improved sensing performance compared to pristine rGO such as high sensitivity (31% increase in electrical resistance when humidity is shifted from 2 to 97%), an ultrafast response (25 ms) and recovery in the subsecond timescale, low hysteresis (1.1%), excellent repeatability and stability, as well as high selectivity toward moisture. Such highest-key-performance indicators demonstrate the full potential of two-dimensional (2D) materials when decorated with suitably designed supramolecular receptors to develop the next generation of chemical sensors of any analyte of interest.

9.
Chem Commun (Camb) ; 56(11): 1689-1692, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31942908

RESUMO

Here we applied a novel concept of "sublimation-aided nanostructuring" to control the polymorphism of a model material. The process exploits fractional precipitation as a tool for crystallisation in confinement using a templating agent that sublimes away from the system at the end of the process.

10.
Nanoscale ; 12(3): 1432-1437, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912835

RESUMO

Herein, we propose an easy and practical method for the fabrication of highly ordered supramolecular structures. The proposed approach combines fractional precipitation and wet lithography, to obtain a spatially-defined pattern of submicrometric structures with a high molecular order of poly(3-hexylthiophene). The process is demonstrated by XRD, confocal and time-resolved spectroscopy and by the performance of an effective field effect transistor.

11.
Nat Commun ; 10(1): 5750, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848336

RESUMO

Metal halide perovskites have emerged as promising photovoltaic materials, but, despite ultralow thermal conductivity, progress on developing them for thermoelectrics has been limited. Here, we report the thermoelectric properties of all-inorganic tin based perovskites with enhanced air stability. Fine tuning the thermoelectric properties of the films is achieved by self-doping through the oxidation of tin (ΙΙ) to tin (ΙV) in a thin surface-layer that transfers charge to the bulk. This separates the doping defects from the transport region, enabling enhanced electrical conductivity. We show that this arises due to a chlorine-rich surface layer that acts simultaneously as the source of free charges and a sacrificial layer protecting the bulk from oxidation. Moreover, we achieve a figure-of-merit (ZT) of 0.14 ± 0.01 when chlorine-doping and degree of the oxidation are optimised in tandem.

12.
Nanoscale ; 10(48): 23018-23026, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30506071

RESUMO

Metal-organic composites are of great interest for a wide range of applications. The control of their structure remains a challenge, one of the problems being a complex interplay of covalent and supramolecular interactions. This paper describes the self-assembly, thermal stability and phase transitions of ordered structures of silver atoms and thiol molecules spanning from the molecular to the mesoscopic scale. Building blocks of molecularly defined clusters formed from 44 silver atoms, each particle coated by a monolayer of 30 thiol ligands, are used as ideal building blocks. By changing solvent and temperature it is possible to tune the self-assembled 3D crystals of pristine nanoparticles or, conversely, 2D layered structures, with alternated stacks of Ag atoms and thiol monolayers. The study investigates morphological, chemical and structural stability of these materials between 25 and 300 °C in situ and ex situ at the nanoscale by combining optical and electronic spectroscopic and scattering techniques, scanning probe microscopies and density-functional theory (DFT) calculations. The proposed wet-chemistry approach is relatively cheap, easy to implement, and scalable, allowing the fabricated materials with tuned properties using the same building blocks.

13.
Langmuir ; 33(45): 12859-12864, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29028341

RESUMO

Ferroelectric molecular compounds present great advantages for application in electronics because they combine high polarization values, comparable to those of inorganic materials, with the flexibility and low-cost properties of organic ones. However, some limitations to their applicability are related to the high crystallinity required to deploy ferroelectricity. In this article, highly ordered ferroelectric patterned thin films of diisopropylammonium bromide have been successfully fabricated by a lithographically controlled wetting technique. Confinement favors the self-organization of ferroelectric crystals, avoiding the formation of polymorphs and promoting the long-range orientation of crystallographic axes. Patterned structures present high stability, and the polarization can be switched to be arranged in stable domain pattern for application in devices.

14.
Adv Mater ; 29(38)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741739

RESUMO

Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions.

15.
J Phys Chem Lett ; 8(13): 3081-3086, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28621140

RESUMO

The long diffusion length of charge carriers in the CH3NH3PbI3 perovskite is one of the most relevant properties for explaining the high photovoltaic efficiency of perovskite solar cells. As a possible mechanism for the large diffusion length of electrons and holes, several authors suggested a reduced coulomb attraction of the carriers due to the formation of polarons. Here we performed continuous wave far-infrared photoinduced absorption (PIA) experiments on CH3NH3PbI3; spectral changes are associated with local deformation of the lattice around the photogenerated long-lived charges, a typical signature of photoinduced polarons. Ab initio calculations show confinement of charge carriers at the interface between structural domains characterized by a different tilting of the PbI6 octahedra. The differential IR spectrum between unperturbed and perturbed simulated structures shows a close pattern to the experimental PIA. Positive and negative charges are confined in different varieties of the perovskites coherent with the low recombination and long diffusion length of photogenerated carriers.

16.
Adv Mater ; 29(11)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28112837

RESUMO

Crystalline dioctyl-3,4,9,10-perylenedicarboximide nanowires and 6,13-bis(triisopropylsilylethynyl) pentacene microplates are integrated into a vertical-yet-open asymmetrical heterojunction for the realization of a high-performance organic photovoltaic detector, which shows fast photoresponse, ultrahigh signal-to-noise ratio, and high sensitivity to weak light.

17.
ACS Nano ; 11(2): 2000-2007, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28117966

RESUMO

Achieving nanoscale control over the crystalline structure and morphology of electroactive polymer films and the possibility to transfer them onto any solid substrate are important tasks for the fabrication of high-performance organic/polymeric field-effect transistors (FETs). In this work, we demonstrate that ultrathin active layers preassembled at the water/air interface can possess high, anisotropic, and substrate-independent mobility in polymer FETs. By exploiting a modified approach to the Langmuir-Schaeffer technique, we self-assemble conjugated polymers in fibrillar structures possessing controlled thickness, nanoscale structure, and morphology; these highly ordered nanofibrils can be transferred unaltered onto any arbitrary substrate. We show that FETs based on these films possess high and anisotropic hole mobility approaching 1 cm2 V-1 s-1 along the nanofibrils, being over 1 order of magnitude beyond the state-of-the-art for Langmuir-Schaefer polymer FETs. Significantly, we demonstrate that the FET performances are independent of the chemical nature and dielectric permittivity of the substrate, overcoming a critical limit in the field of polymer FETs. Our method allows the fabrication of ultrathin films for low-cost, high-performance, transparent, and flexible devices supported on any dielectric substrate.

18.
ACS Appl Mater Interfaces ; 8(10): 6563-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26890532

RESUMO

Responsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups. When the film is in the liquid crystalline phase, the trans → cis isomerization induces a major surface reorganization on the mesoscopic scale that is characterized by a reduction in the effective thickness of the film. The film conductivity is measured in vertical two-terminal devices in which the polymer is sandwiched between a Au contact and a liquid compliant E-GaIn drop. We demonstrate that the trans → cis isomerization is accompanied by a reversible 100-fold change in the film conductance. In this way, the device can be set in a high- or low-resistance state by light irradiation at different wavelengths. This result paves the way toward the potential use of poly(metha)acrylate/azobenzene polymer films as active layer for optical input/electrical output memory elements.

19.
Dalton Trans ; 45(1): 134-43, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26575005

RESUMO

We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations.

20.
Chemphyschem ; 16(16): 3379-84, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26342212

RESUMO

The amorphous aggregation of Aß1-40 peptide is addressed by using micromolding in capillaries. Both the morphology and the size of the aggregates are modulated by changing the contact angle of the sub-micrometric channel walls. Upon decreasing the hydrophilicity of the channels, the aggregates change their morphology from small aligned drops to discontinuous lines, thereby keeping their amorphous structure. Aß1-40 fibrils are observed at high contact angles.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Dimetilpolisiloxanos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Varredura por Sonda , Fragmentos de Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...