Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(14): 6433-6439, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37460109

RESUMO

Black phosphorus (BP) stands out among two-dimensional (2D) semiconductors because of its high mobility and thickness dependent direct band gap. However, the quasiparticle band structure of ultrathin BP has remained inaccessible to experiment thus far. Here we use a recently developed laser-based microfocus angle resolved photoemission (µ-ARPES) system to establish the electronic structure of 2-9 layer BP from experiment. Our measurements unveil ladders of anisotropic, quantized subbands at energies that deviate from the scaling observed in conventional semiconductor quantum wells. We quantify the anisotropy of the effective masses and determine universal tight-binding parameters, which provide an accurate description of the electronic structure for all thicknesses.

2.
Phys Rev Lett ; 129(9): 096101, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083654

RESUMO

Two-dimensional confinement of lattices produces a variety of order and disorder phenomena. When the confining walls have atomic granularity, unique structural phases are expected, of relevance in nanotribology, porous materials, or intercalation compounds where, e.g., electronic states can emerge accordingly. The interlayer's own order is frustrated by the competing interactions exerted by the two confining surfaces. We revisit the concept of orientational ordering, introduced by Novaco and McTague to describe the twist of incommensurate monolayers on crystalline surfaces. We predict a two-way twist of the monolayer as its density increases. We discover such a behavior in alkali atom monolayers (sodium, cesium) confined between graphene and an iridium surface, using scanning tunneling microscopy and electron diffraction.

3.
Chem Sci ; 12(6): 2257-2267, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34163992

RESUMO

Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber-Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

4.
Small ; 16(4): e1905784, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31867896

RESUMO

MXenes-2D carbides/nitrides derived from their bulk nanolamellar Mn +1 AXn phase (MAX) counterparts-are, for the most part, obtained by chemical etching. Despite the fact that the MA bonds in the MAX phases are not weak, in this work it is demonstrated that relatively large MAX single crystals can be mechanically exfoliated using the adhesive tape method to produce flakes whose thickness can be reduced down to half a unit cell. The exfoliated flakes, transferred onto SiO2 /Si substrates, are analyzed using electric force microscopy (EFM). No appreciable variation in EFM signal with flake thickness is found. EFM contrast between the flakes and SiO2 not only depends on the contact surface potential, but also on the local capacitance. The contribution of the latter can be used to show the metallic character-confirmed by four-contact resistivity measurements-of even the thinnest of flakes. Because the A-layers are preserved, strictly speaking MXenes are not dealt with in this work, but rather MAXenes. This is important in the case where the "A" layers contain magnetic elements such as Mo4 Ce4 Al7 C3 , whose structure is a derivative of the MAX structure.

5.
ACS Nano ; 13(4): 4720-4730, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30916924

RESUMO

Silicon oxide can be formed in a crystalline form, when prepared on a metallic substrate. It is a candidate support catalyst and possibly the ultimately thin version of a dielectric host material for two-dimensional materials and heterostructures. We determine the atomic structure and chemical bonding of the ultimately thin version of the oxide, epitaxially grown on Ru(0001). In particular, we establish the existence of two sublattices defined by metal-oxygen-silicon bridges involving inequivalent substrate sites. We further discover four electronic bands below the Fermi level, at high binding energy, two of them having a linear dispersion at their crossing K point (Dirac cones) and two others forming semiflat bands. While the latter two correspond to hybridized states between the oxide and the metal, the former relate to the topmost silicon-oxygen plane, which is not directly coupled to the substrate. Our analysis is based on high-resolution X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy, scanning tunneling microscopy, and density functional theory calculations.

7.
Chemphyschem ; 19(18): 2405-2410, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29847012

RESUMO

Topological insulators are promising candidates for spintronic applications due to their topologically protected, spin-momentum locked and gapless surface states. The breaking of the time-reversal symmetry after the introduction of magnetic impurities, such as 3d transition metal atoms embedded in two-dimensional molecular networks, could lead to several phenomena interesting for device fabrication. The first step towards the fabrication of metal-organic coordination networks on the surface of a topological insulator is to investigate the adsorption of the pure molecular layer, which is the aim of this study. Here, the effect of the deposition of the electron acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) molecules on the surface of a prototypical topological insulator, bismuth selenide (Bi2 Se3 ), is investigated. Scanning tunneling microscope images at low-temperature reveal the formation of a highly ordered two-dimensional molecular network. The essentially unperturbed electronic structure of the topological insulator observed by photoemission spectroscopy measurements demonstrates a negligible charge transfer between the molecular layer and the substrate. Density functional theory calculations confirm the picture of a weakly interacting adsorbed molecular layer. These results reveal significant potential of TCNQ for the realization of metal-organic coordination networks on the topological insulator surface.

8.
J Chem Phys ; 147(13): 134702, 2017 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-28987123

RESUMO

Manganese-phthalocyanines form assembled chains with a variety of ordered super-structures, flat lying along the Au(110) reconstructed channels. The chains first give rise to a ×5 symmetry reconstruction, while further deposition of MnPc leads to a ×7 periodicity at the completion of the first single layer. A net polarization with the formation of an interface dipole is mainly due to the molecular π-states located on the macrocycles pyrrole rings, while the central metal ion induces a reduction in the polarization, whose amount is related to the Mn-Au interaction. The adsorption-induced interface polarization is compared to other 3d-metal phthalocyanines, to unravel the role of the central metal atom configuration in the interaction process of the d-states. The MnPc adsorption on Au(110) induces the re-hybridization of the electronic states localized on the central metal atom, promoting a charge redistribution of the molecular orbitals of the MnPc molecules. The molecule-substrate interaction is controlled by a symmetry-determined mixing between the electronic states, involving also the molecular empty orbitals with d character hybridized with the nitrogen atoms of the pyrrole ring, as deduced by photoemission and X-ray absorption spectroscopy exploiting light polarization. The symmetry-determined mixing between the electronic states of the Mn metal center and of the Au substrate induces a density of states close to the Fermi level for the ×5 phase.

9.
ACS Nano ; 11(11): 11206-11216, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28992415

RESUMO

Few- and single-layer MoS2 host substantial densities of defects. They are thought to influence the doping level, the crystal structure, and the binding of electron-hole pairs. We disentangle the concomitant spectroscopic expression of all three effects and identify to what extent they are intrinsic to the material or extrinsic to it, i.e., related to its local environment. We do so by using different sources of MoS2-a natural one and one prepared at high pressure and high temperature-and different substrates bringing varying amounts of charged impurities and by separating the contributions of internal strain and doping in Raman spectra. Photoluminescence unveils various optically active excitonic complexes. We discover a defect-bound state having a low binding energy of 20 meV that does not appear sensitive to strain and doping, unlike charged excitons. Conversely, the defect does not significantly dope or strain MoS2. Scanning tunneling microscopy and density functional theory simulations point to substitutional atoms, presumably individual nitrogen atoms at the sulfur site. Our work shows the way to a systematic understanding of the effect of external and internal fields on the optical properties of two-dimensional materials.

10.
Nano Lett ; 16(6): 3409-14, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27010705

RESUMO

Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.

11.
J Phys Chem Lett ; 6(9): 1690-5, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26263335

RESUMO

A single layer of flat-lying iron phthalocyanine (FePc) molecules assembled on graphene grown on Ir(111) preserves the magnetic moment, as deduced by X-ray magnetic circular dichroism from the Fe L2,3 edges. Furthermore, the FePc molecules in contact with the graphene buffer layer exhibit an enhancement of the magnetic anisotropy, with emergence of an in-plane easy magnetic axis, reflected by an increased orbital moment of the FePc molecules in contact with the C atoms in the graphene sheet. The origin of the increased magnetic anisotropy is discussed, considering the absence of electronic state hybridization, and the breaking of symmetry upon FePc adsorption on graphene.

12.
Beilstein J Nanotechnol ; 5: 308-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24778953

RESUMO

Graphene grown on crystalline metal surfaces is a good candidate to act as a buffer layer between the metal and organic molecules that are deposited on top, because it offers the possibility to control the interaction between the substrate and the molecules. High-resolution angular-resolved ultraviolet photo electron spectroscopy (ARPES) is used to determine the interaction states of iron phthalocyanine molecules that are adsorbed onto graphene on Ni(111). The iron phthalocyanine deposition induces a quenching of the Ni d surface minority band and the appearance of an interface state on graphene/Ni(111). The results have been compared to the deposition of iron phthalocyanine on graphene/Ir(111), for which a higher decoupling of the organic molecule from the underlying metal is exerted by the graphene buffer layer.

13.
J Chem Phys ; 139(18): 184707, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24320291

RESUMO

A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...