Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biomed Mater Res A ; 112(7): 973-987, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308554

RESUMO

The degeneration of intervertebral disc (IVD) is a disease of the entire joint between two vertebrae in the spine caused by loss of extracellular matrix (ECM) integrity, to date with no cure. The various regenerative approaches proposed so far have led to very limited successes. An emerging opportunity arises from the use of decellularized ECM as a scaffolding material that, directly or in combination with other materials, has greatly facilitated the advancement of tissue engineering. Here we focused on the decellularized matrix obtained from human umbilical cord Wharton's jelly (DWJ) which retains several structural and bioactive molecules very similar to those of the IVD ECM. However, being a viscous gel, DWJ has limited ability to retain ordered structural features when considered as architecture scaffold. To overcome this limitation, we produced DWJ-based multifunctional hydrogels, in the form of 3D millicylinders containing different percentages of alginate, a seaweed-derived polysaccharide, and gelatin, denatured collagen, which may impart mechanical integrity to the biologically active DWJ. The developed protocol, based on a freezing step, leads to the consolidation of the entire polymeric dispersion mixture, followed by an ionic gelation step and a freeze-drying process. Finally, a porous, stable, easily storable, and suitable matrix for ex vivo experiments was obtained. The properties of the millicylinders (Wharton's jelly millicylinders [WJMs]) were then tested in culture of degenerated IVD cells isolated from disc tissues of patients undergoing surgical discectomy. We found that WJMs with the highest percentage of DWJ were effective in supporting cell migration, restoration of the IVD phenotype (increased expression of Collagen type 2, aggrecan, Sox9 and FOXO3a), anti-inflammatory action, and stem cell activity of resident progenitor/notochordal cells (increased number of CD24 positive cells). We are confident that the DWJ-based formulations proposed here can provide adequate stimuli to the cells present in the degenerated IVD to restart the anabolic machinery.


Assuntos
Hidrogéis , Disco Intervertebral , Regeneração , Geleia de Wharton , Humanos , Geleia de Wharton/citologia , Hidrogéis/química , Hidrogéis/farmacologia , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/patologia , Alicerces Teciduais/química , Células Cultivadas
2.
ACS Nano ; 18(3): 2047-2065, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38166155

RESUMO

The use of piezoelectric nanomaterials combined with ultrasound stimulation is emerging as a promising approach for wirelessly triggering the regeneration of different tissue types. However, it has never been explored for boosting chondrogenesis. Furthermore, the ultrasound stimulation parameters used are often not adequately controlled. In this study, we show that adipose-tissue-derived mesenchymal stromal cells embedded in a nanocomposite hydrogel containing piezoelectric barium titanate nanoparticles and graphene oxide nanoflakes and stimulated with ultrasound waves with precisely controlled parameters (1 MHz and 250 mW/cm2, for 5 min once every 2 days for 10 days) dramatically boost chondrogenic cell commitment in vitro. Moreover, fibrotic and catabolic factors are strongly down-modulated: proteomic analyses reveal that such stimulation influences biological processes involved in cytoskeleton and extracellular matrix organization, collagen fibril organization, and metabolic processes. The optimal stimulation regimen also has a considerable anti-inflammatory effect and keeps its ability to boost chondrogenesis in vitro, even in an inflammatory milieu. An analytical model to predict the voltage generated by piezoelectric nanoparticles invested by ultrasound waves is proposed, together with a computational tool that takes into consideration nanoparticle clustering within the cell vacuoles and predicts the electric field streamline distribution in the cell cytoplasm. The proposed nanocomposite hydrogel shows good injectability and adhesion to the cartilage tissue ex vivo, as well as excellent biocompatibility in vivo, according to ISO 10993. Future perspectives will involve preclinical testing of this paradigm for cartilage regeneration.


Assuntos
Condrogênese , Proteômica , Nanogéis , Hidrogéis/farmacologia , Diferenciação Celular , Engenharia Tecidual
3.
Cancer Immunol Res ; 12(2): 247-260, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051221

RESUMO

Ewing sarcoma (EWS) is the second most common pediatric bone tumor. The EWS tumor microenvironment is largely recognized as immune-cold, with macrophages being the most abundant immune cells and their presence associated with worse patient prognosis. Expression of CD99 is a hallmark of EWS cells, and its targeting induces inhibition of EWS tumor growth through a poorly understood mechanism. In this study, we analyzed CD99 expression and functions on macrophages and investigated whether the concomitant targeting of CD99 on both tumor and macrophages could explain the inhibitory effect of this approach against EWS. Targeting CD99 on EWS cells downregulated expression of the "don't eat-me" CD47 molecule but increased levels of the "eat-me" phosphatidyl serine and calreticulin molecules on the outer leaflet of the tumor cell membrane, triggering phagocytosis and digestion of EWS cells by macrophages. In addition, CD99 ligation induced reprogramming of undifferentiated M0 macrophages and M2-like macrophages toward the inflammatory M1-like phenotype. These events resulted in the inhibition of EWS tumor growth. Thus, this study reveals what we believe to be a previously unrecognized function of CD99, which engenders a virtuous circle that delivers intrinsic cell death signals to EWS cells, favors tumor cell phagocytosis by macrophages, and promotes the expression of various molecules and cytokines, which are pro-inflammatory and usually associated with tumor regression. This raises the possibility that CD99 may be involved in boosting the antitumor activity of macrophages.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Humanos , Criança , Sarcoma de Ewing/genética , Morte Celular , Linhagem Celular Tumoral , Macrófagos/metabolismo , Microambiente Tumoral , Antígeno 12E7
5.
Bone Rep ; 19: 101728, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076483

RESUMO

COL2A1 gene encodes the alpha-1 chain of type-II procollagen. Heterozygous pathogenic variants are associated with the broad clinical spectrum of genetic diseases known as type-II collagenopathies. We aimed to characterize the NM_001844.5:c.1330G>A;p.Gly444Ser variant detected in the COL2A1 gene through trio-based prenatal exome sequencing in a fetus presenting a severe skeletal phenotype at 31 Gestational Weeks and in his previously undisclosed mild-affected father. Functional studies on father's cutaneous fibroblasts, along with in silico protein modeling and in vitro chondrocytes differentiation, showed intracellular accumulation of collagen-II, its localization in external Golgi vesicles and nuclear morphological alterations. Extracellular matrix showed a disorganized fibronectin network. These results showed that p.Gly444Ser variant alters procollagen molecules processing and the assembly of mature type-II collagen fibrils, according to COL2A1-chain disorganization, displayed by protein modeling. Clinical assessment at 38 y.o., through a reverse-phenotyping approach, revealed limp gait, short and stocky appearance. X-Ray and MRI showed pelvis asymmetry with severe morpho-structural alterations of the femoral heads bilaterally, consistent with a mild form of type-II collagenopathy. This study shows how the fusion of genomics and clinical expertise can drive a diagnosis supported by cellular and bioinformatics studies to effectively establish variants pathogenicity.

6.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998321

RESUMO

Type-2 Familial Partial Lipodystrophy (FPLD2), a rare lipodystrophy caused by LMNA mutations, is characterized by a loss of subcutaneous fat from the trunk and limbs and excess accumulation of adipose tissue in the neck and face. Several studies have reported that the mineralocorticoid receptor (MR) plays an essential role in adipose tissue differentiation and functionality. We previously showed that brown preadipocytes isolated from a FPLD2 patient's neck aberrantly differentiate towards the white lineage. As this condition may be related to MR activation, we suspected altered MR dynamics in FPLD2. Despite cytoplasmic MR localization in control brown adipocytes, retention of MR was observed in FPLD2 brown adipocyte nuclei. Moreover, overexpression of wild-type or mutated prelamin A caused GFP-MR recruitment to the nuclear envelope in HEK293 cells, while drug-induced prelamin A co-localized with endogenous MR in human preadipocytes. Based on in silico analysis and in situ protein ligation assays, we could suggest an interaction between prelamin A and MR, which appears to be inhibited by mineralocorticoid receptor antagonism. Importantly, the MR antagonist spironolactone redirected FPLD2 preadipocyte differentiation towards the brown lineage, avoiding the formation of enlarged and dysmorphic lipid droplets. Finally, beneficial effects on brown adipose tissue activity were observed in an FPLD2 patient undergoing spironolactone treatment. These findings identify MR as a new lamin A interactor and a new player in lamin A-linked lipodystrophies.


Assuntos
Lipodistrofia Parcial Familiar , Humanos , Adipócitos Marrons/metabolismo , Lamina Tipo A/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacologia , Receptores de Mineralocorticoides/metabolismo , Células HEK293 , Tecido Adiposo Marrom/metabolismo
7.
Ann Biomed Eng ; 51(3): 550-565, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36057760

RESUMO

Articular cartilage defects and degenerative diseases are pathological conditions that cause pain and the progressive loss of joint functionalities. The most severe cases are treated through partial or complete joint replacement with prostheses, even if the interest in cartilage regeneration and re-growth methods is steadily increasing. These methods consist of the targeted deposition of biomaterials. Only a few tools have been developed so far for performing these procedures in a minimally invasive way. This work presents an innovative device for the direct deposition of multiple biomaterials in an arthroscopic scenario. The tool is easily handleable and allows the extrusion of three different materials simultaneously. It is also equipped with a flexible tip to reach remote areas of the damaged cartilage. Three channels are arranged coaxially and a spring-based dip-coating approach allows the fabrication and assembly of a bendable polymeric tip. Experimental tests were performed to characterize the tip, showing the ability to bend it up to 90° (using a force of ~ 1.5 N) and to extrude three coaxial biomaterials at the same time with both tip straight and tip fully bent. Rheometric analysis and fluid-dynamic computational simulations were performed to analyze the fluids' behavior; the maximum shear stresses were observed in correspondence to the distal tip and the channel convergence chamber, but with values up to ~ 1.2 kPa, compatible with a safe extrusion of biomaterials, even laden with cells. The cells viability was assessed after the extrusion with Live/Dead assay, confirming the safety of the extrusion procedures. Finally, the tool was tested arthroscopically in a cadaveric knee, demonstrating its ability to deliver the biomaterial in different areas, even ones that are typically hard-to-reach with traditional tools.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Articulação do Joelho/cirurgia , Artroscopia , Cartilagem Articular/cirurgia , Cartilagem Articular/patologia , Sobrevivência Celular , Materiais Biocompatíveis , Osteoartrite do Joelho/patologia
9.
Cells ; 11(24)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36552733

RESUMO

This systematic review is focused on the main characteristics of the hydrogels used for embedding the mesenchymal stromal cells (MSCs) in in vitro/ex vivo studies, in vivo OA models and clinical trials for favoring cartilage regeneration in osteoarthritis (OA). PubMED and Embase databases were used to select the papers that were submitted to a public reference manager Rayyan Systematic Review Screening Software. A total of 42 studies were considered eligible: 25 articles concerned in vitro studies, 2 in vitro and ex vivo ones, 5 in vitro and in vivo ones, 8 in vivo ones and 2 clinical trials. Some in vitro studies evidenced a rheological characterization of the hydrogels and description of the crosslinking methods. Only 37.5% of the studies considered at the same time chondrogenic, fibrotic and hypertrophic markers. Ex vivo studies focused on hydrogel adhesion properties and the modification of MSC-laden hydrogels subjected to compression tests. In vivo studies evidenced the effect of cell-laden hydrogels in OA animal models or defined the chondrogenic potentiality of the cells in subcutaneous implantation models. Clinical studies confirmed the positive impact of these treatments on patients with OA. To speed the translation to the clinical use of cell-laden hydrogels, further studies on hydrogel characteristics, injection modalities, chemo-attractant properties and adhesion strength are needed.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Animais , Hidrogéis/farmacologia , Cartilagem , Osteoartrite/terapia , Modelos Animais
10.
Gels ; 8(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36547290

RESUMO

Autophagy is a cellular process that contributes to the maintenance of cell homeostasis through the activation of a specific path, by providing the necessary factors in stressful and physiological situations. Autophagy plays a specific role in chondrocyte differentiation; therefore, we aimed to analyze this process in adipose-derived mesenchymal stromal cells (ASCs) laden in three-dimensional (3D) hydrogel. We analyzed chondrogenic and autophagic markers using molecular biology, immunohistochemistry, and electron microscopy. We demonstrated that ASCs embedded in 3D hydrogel showed an increase expression of typical autophagic markers Beclin 1, LC3, and p62, associated with clear evidence of autophagic vacuoles in the cytoplasm. During ASCs chondrogenic differentiation, we showed that autophagic markers declined their expression and autophagic vesicles were rare, while typical chondrogenic markers collagen type 2, and aggrecan were significantly increased. In line with developmental animal models of cartilage, our data showed that in a 3D hydrogel, ASCs increased their autophagic features. This path is the fundamental prerequisite for the initial phase of differentiation that contributes to fueling the cells with energy and factors necessary for chondrogenic differentiation.

11.
Macromol Biosci ; 22(10): e2200096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35817025

RESUMO

A stable adhesion to the cartilage is a crucial requisite for hydrogels used for cartilage regeneration. Indeed, a weak interface between the tissue and the implanted material may produce a premature detachment and thus the failure of the regeneration processes. Fibrin glue, cellulose nanofibers and catecholamines have been proposed in the state-of-the-art as primers to improve the adhesion. However, no studies focused on a systematic comparison of their performance. This work aims to evaluate the adhesion strength between ex vivo cartilage specimens and polysaccharide hydrogels (gellan gum and methacrylated gellan gum), by applying the mentioned primers as intermediate layer. Results show that the fibrin glue and the cellulose nanofibers improve the adhesion strength, while catecholamines do not guarantee reaching a clinically acceptable value. Stem cells embedded in gellan gum hydrogels reduce the adhesion strength when fibrin glue is used as a primer, being anyhow still sufficient for in vivo applications.


Assuntos
Adesivo Tecidual de Fibrina , Hidrogéis , Cartilagem , Catecolaminas , Celulose , Hidrogéis/farmacologia , Polissacarídeos Bacterianos , Engenharia Tecidual/métodos
12.
Gels ; 8(6)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35735726

RESUMO

Articular cartilage is known to have limited intrinsic self-healing capacity when a defect or a degeneration process occurs. Hydrogels represent promising biomaterials for cell encapsulation and injection in cartilage defects by creating an environment that mimics the cartilage extracellular matrix. The aim of this study is the analysis of two different concentrations (1:1 and 1:2) of VitroGel® (VG) hydrogels without (VG-3D) and with arginine-glycine-aspartic acid (RGD) motifs, (VG-RGD), verifying their ability to support chondrogenic differentiation of encapsulated human adipose mesenchymal stromal cells (hASCs). We analyzed the hydrogel properties in terms of rheometric measurements, cell viability, cytotoxicity, and the expression of chondrogenic markers using gene expression, histology, and immunohistochemical tests. We highlighted a shear-thinning behavior of both hydrogels, which showed good injectability. We demonstrated a good morphology and high viability of hASCs in both hydrogels. VG-RGD 1:2 hydrogels were the most effective, both at the gene and protein levels, to support the expression of the typical chondrogenic markers, including collagen type 2, SOX9, aggrecan, glycosaminoglycan, and cartilage oligomeric matrix protein and to decrease the proliferation marker MKI67 and the fibrotic marker collagen type 1. This study demonstrated that both hydrogels, at different concentrations, and the presence of RGD motifs, significantly contributed to the chondrogenic commitment of the laden hASCs.

13.
Acta Histochem ; 124(5): 151909, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35679805

RESUMO

OBJECTIVE: Immune cell evaluation could be useful for clarifying etiopathogenesis, providing a support for formulating the diagnoses of clinically similar joint pathologies or guiding indications for possible therapeutic targets. To contribute to differential diagnosis in joint pathologies we performed an immunophenotypical profile analyzing different immune cells in synovial tissues from patients with rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS: The Krenn and immunologic synovitis (IMSYC) scores, which include the evaluation of T lymphocytes (CD3 positive), B lymphocytes (CD20), endothelial cells (CD31), macrophages (CD68) and proliferating cells (Ki-67 positive) were used to analyze the synovial tissue samples. Moreover, to corroborate immune activation, neutrophils (CD15 positive), NK cells (CD56 positive), plasma cells (CD138 positive), IgG4 and IgG4 secreting-CD138 cells were analyzed using immunohistochemical techniques. RESULTS: We confirmed that all the samples had a high synovitis score according to both the Krenn and IMSYC scores. In both the RA and OA groups, we found similar scores for CD3 (T lymphocytes), CD20 (B lymphocytes), CD31 (endothelial cells), CD56 (NK cells), CD68 (macrophages) CD138 (plasma cells) and IgG4. In contrast, CD15 (neutrophils) was significantly higher in RA compared to OA. Interestingly, IgG4 secreting-CD138 cells were significantly higher in RA than OA, even if CD138 had the same score in both the RA and OA samples. CONCLUSIONS: This study found that the scores for different immune cells were similar in both RA and OA synovial tissue with a high synovitis score. CD15 and IgG4 secreting-CD138 were the only immune cells with a higher score in RA compared to OA, suggesting a potential use for discriminating among pathologies with a high synovitis score.


Assuntos
Artrite Reumatoide , Osteoartrite , Sinovite , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/patologia , Diagnóstico Diferencial , Células Endoteliais/patologia , Humanos , Imunoglobulina G , Neutrófilos/patologia , Osteoartrite/diagnóstico , Osteoartrite/patologia , Plasmócitos/patologia , Membrana Sinovial/patologia , Sinovite/diagnóstico , Sinovite/patologia
14.
Eur J Med Res ; 27(1): 57, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462544

RESUMO

BACKGROUND: Progressive pseudorheumatoid dysplasia (PPRD) is a rare autosomal recessive non-inflammatory skeletal disease with childhood onset and is characterized by a progressive chondropathy in multiple joints, and skeletal abnormalities. To date, the etiopathological relationship between biological modification occurring in PPRD and genetic mutation remains an open issue, partially due to the limited availability of biological samples obtained from PPRD patients for experimental studies. CASE PRESENTATION: We describe the clinical features of a PPRD patient and experimental results obtained from the biological characterization of PPRD mesenchymal stromal cells (MSCs) and osteoblasts (OBs) compared to normal cell populations. Phenotypic profile modifications were found in PPRD compared to normal subjects, essentially ascribed to decreased expression of CD146, osteocalcin (OC) and bone sialoprotein in PPRD MSCs and enhanced CD146, OC and collagen type I expression in PPRD OBs. Gene expression of Dickkopf-1, a master inhibitor of WNT signaling, was remarkably increased in PPRD MSCs compared to normal expression range, whereas PPRD OBs essentially exhibited higher OC gene expression levels. PPRD MSCs failed to efficiently differentiate into mature OBs, so showing a greatly impaired osteogenic potential. CONCLUSIONS: Since all regenerative processes require stem cell reservoirs, compromised functionality of MSCs may lead to an imbalance in bone homeostasis, suggesting a potential role of MSCs in the pathological mechanisms of PPRD caused by WNT1-inducible signaling pathway protein-3 (WISP3) mutations. In consideration of the lack of compounds with proven efficacy in such a rare disease, these data might contribute to better identify new specific and effective therapeutic approaches.


Assuntos
Artropatias , Células-Tronco Mesenquimais , Antígeno CD146 , Diferenciação Celular/genética , Criança , Humanos , Artropatias/congênito , Artropatias/fisiopatologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética
15.
Sci Transl Med ; 13(609): eaaz4499, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34516821

RESUMO

Osteoarthritis (OA) is the most prevalent joint disorder, causing pain and disability predominantly in the aging population but also affecting young individuals. Current treatments are limited to use of anti-inflammatory drugs to alleviate symptoms or degenerated joint replacement by a prosthetic implant at the end stage of the disease. We hypothesized that degenerative cartilage defects can be treated using nasal chondrocyte­based tissue-engineered cartilage (N-TEC). We demonstrate that N-TEC maintained cartilaginous properties when exposed in vitro to inflammatory stimuli found in osteoarthritic joints and favorably altered the inflammatory profile of cells from osteoarthritic joints. These effects were at least partially mediated by down-regulation of the WNT (wingless/integrated) signaling pathway through sFRP1 (secreted frizzled-related protein-1). We further report that N-TEC survive and engraft in vivo in ectopic mouse models reproducing a human osteochondral OA tissue environment, as well as in sheep articular cartilage defects that mimic degenerative settings. Last, we tested the safety of autologous N-TEC for the treatment of osteoarthritic cartilage defects in the knees of two patients with advanced OA (Kellgren and Lawrence grades 3 and 4) who were otherwise considered for unicondylar knee arthroplasty. No adverse reactions were recorded, and patients reported reduced pain as well as improved joint function and life quality 14 months after surgery. Together, our findings indicate that N-TEC can directly contribute to cartilage repair in osteoarthritic joints. A suitably powered clinical trial is now required to assess its efficacy in the treatment of patients with OA.


Assuntos
Cartilagem Articular , Condrócitos , Articulação do Joelho , Cartilagens Nasais
16.
Biology (Basel) ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202598

RESUMO

Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.

17.
ACS Biomater Sci Eng ; 7(7): 3306-3320, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34101410

RESUMO

Robotic dispensing-based 3D bioprinting represents one of the most powerful technologies to develop hydrogel-based 3D constructs with enormous potential in the field of regenerative medicine. The optimization of hydrogel printing parameters, proper geometry and internal architecture of the constructs, and good cell viability during the bioprinting process are the essential requirements. In this paper, an analytical model based on the hydrogel rheological properties was developed to predict the extruded filament width in order to maximize the printed structure's fidelity to the design. Viscosity data of two natural hydrogels were imputed to a power-law model to extrapolate the filament width. Further, the model data were validated by monitoring the obtained filament width as the output. Shear stress values occurring during the bioprinting process were also estimated. Human mesenchymal stromal cells (hMSCs) were encapsulated in the silk fibroin-gelatin (G)-based hydrogel, and a 3D bioprinting process was performed to produce cell-laden constructs. Live and dead assay allowed estimating the impact of needle shear stress on cell viability after the bioprinting process. Finally, we tested the potential of hMSCs to undergo chondrogenic differentiation by evaluating the cartilaginous extracellular matrix production through immunohistochemical analyses. Overall, the use of the proposed analytical model enables defining the optimal printing parameters to maximize the fabricated constructs' fidelity to design parameters before the process execution, enabling to achieve more controlled and standardized products than classical trial-and-error approaches in the biofabrication of engineered constructs. Employing modeling systems exploiting the rheological properties of the hydrogels might be a valid tool in the future for guaranteeing high cell viability and for optimizing tissue engineering approaches in regenerative medicine applications.


Assuntos
Bioimpressão , Fibroínas , Células Cultivadas , Condrogênese , Gelatina , Humanos , Hidrogéis , Células-Tronco Mesenquimais , Engenharia Tecidual
19.
Mater Sci Eng C Mater Biol Appl ; 126: 112175, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082976

RESUMO

Selection of feasible hybrid-hydrogels for best chondrogenic differentiation of human mesenchymal stromal cells (hMSCs) represents an important challenge in cartilage regeneration. In this study, three-dimensional hybrid hydrogels obtained by chemical crosslinking of poly (ethylene glycol) diglycidyl ether (PEGDGE), gelatin (G) without or with chitosan (Ch) or dextran (Dx) polysaccharides were developed. The hydrogels, namely G-PEG, G-PEG-Ch and G-PEG-Dx, were prepared with an innovative, versatile and cell-friendly technique that involves two preparation steps specifically chosen to increase the degree of crosslinking and the physical-mechanical stability of the product: a first homogeneous phase reaction followed by directional freezing, freeze-drying and post-curing. Chondrogenic differentiation of human bone marrow mesenchymal stromal cells (hBM-MSC) was tested on these hydrogels to ascertain whether the presence of different polysaccharides could favor the formation of the native cartilage structure. We demonstrated that the hydrogels exhibited an open pore porous morphology with high interconnectivity and the incorporation of Ch and Dx into the G-PEG common backbone determined a slightly reduced stiffness compared to that of G-PEG hydrogels. We demonstrated that G-PEG-Dx showed a significant increase of its anisotropic characteristic and G-PEG-Ch exhibited higher and faster stress relaxation behavior than the other hydrogels. These characteristics were associated to absence of chondrogenic differentiation on G-PEG-Dx scaffold and good chondrogenic differentiation on G-PEG and G-PEG-Ch. Furthermore, G-PEG-Ch induced the minor collagen proteins and the formation of collagen fibrils with a diameter like native cartilage. This study demonstrated that both anisotropic and stress relaxation characteristics of the hybrid hydrogels were important features directly influencing the chondrogenic differentiation potentiality of hBM-MSC.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Condrogênese , Gelatina , Humanos , Hidrogéis , Engenharia Tecidual
20.
Front Cell Dev Biol ; 9: 650490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055779

RESUMO

Human platelet lysate (hPL) is considered a valid substitute to fetal bovine serum (FBS) in the expansion of mesenchymal stromal cells (MSC), and it is commonly produced starting from intermediate side products of whole blood donations. Through freeze-thaw cycles, hPL is highly enriched in chemokines, growth factors, and adhesion and immunologic molecules. Cell therapy protocols, using hPL instead of FBS for the expansion of cells, are approved by regulatory authorities without concerns, and its administration in patients is considered safe. However, published data are fairly difficult to compare, since the production of hPL is highly variable. This study proposes to optimize and standardize the hPL productive process by using instruments, technologies, and quality/safety standards required for blood bank activities and products. The quality and improved selection of the starting material (i.e., the whole blood), together with the improvement of the production process, guarantee a product characterized by higher content and quality of growth factors as well as a reduction in batch-to-batch variability. By increasing the number of freeze/thaw cycles from one (hPL1c) to four (hPL4c), we obtained a favorable effect on the release of growth factors from platelet α granules. Those changes have directly translated into biological effects leading to a decreasing doubling time (DT) of MSC expansion at 7 days (49.41 ± 2.62 vs. 40.61 ± 1.11 h, p < 0.001). Furthermore, mass spectrometry (MS)-based evaluation has shown that the proliferative effects of hPL4c are also combined with a lower batch-to-batch variability (10-15 vs. 21-31%) at the proteomic level. In conclusion, we have considered lot-to-lot hPL variability, and by the strict application of blood bank standards, we have obtained a standardized, reproducible, safe, cheap, and ready-to-use product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...