Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2311146121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38648469

RESUMO

The pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.


Assuntos
Migração Animal , Aves , Mudança Climática , Ecossistema , Animais , Migração Animal/fisiologia , Aves/fisiologia , Conservação dos Recursos Naturais , Modelos Biológicos
2.
Sci Rep ; 14(1): 4075, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374332

RESUMO

Conditions experienced by an individual during migration have the potential to shape migratory tactic and in turn fitness. For large birds, environmental conditions encountered during migration have been linked with survival and subsequent reproductive output, but this is less known for smaller birds, hindering our understanding of mechanisms driving population change. By combining breeding and tracking data from 62 pied flycatchers (Ficedula hypoleuca) representing two breeding populations collected over 2016-2020, we determine how variation in migration phenology and tactic among individuals affects subsequent breeding. Departure date from West African non-breeding areas to European breeding grounds was highly variable among individuals and had a strong influence on migration tactic. Early departing individuals had longer spring migrations which included longer staging duration yet arrived at breeding sites and initiated breeding earlier than later departing individuals. Individuals with longer duration spring migrations and early arrival at breeding sites had larger clutches, and for males higher fledging success. We suggest that for pied flycatchers, individual carry-over effects may act through departure phenology from West Africa, and the associated spring migration duration, to influence reproduction. While our results confirm that departure date from non-breeding areas can be associated with breeding success in migratory passerines, we identify spring staging duration as a key component of this process.


Assuntos
Migração Animal , Aves Canoras , Humanos , Masculino , Animais , Estações do Ano , Cruzamento , Reprodução
3.
Ecology ; 105(2): e4196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37885122

RESUMO

Seasonal migration, driven by shifts in annual climate cycles and resources, is a key part of the life history and ecology of species across taxonomic groups. By influencing the amount of energy needed to move, external forces such as wind and ocean currents are often key drivers of migratory pathways exposing individuals to varying resources, environmental conditions, and competition pressures impacting individual fitness and population dynamics. Although wildlife movements in connection with wind and ocean currents are relatively well understood, movements within sea-ice fields have been much less studied, despite sea ice being an integral part of polar ecology. Adélie penguins (Pygoscelis adeliae) in the southern Ross Sea, Antarctica, currently exist at the southernmost edge of their range and undergo the longest (~12,000 km) winter migration known for the species. Within and north of the Ross Sea, the Ross Gyre drives ocean circulation and the large-scale movement of sea ice. We used remotely sensed sea-ice movement data together with geolocation-based penguin movement data to test the hypothesis that penguins use gyre-driven sea-ice movement to aid their migration. We found that penguins traveled greater distances when their movement vectors were aligned with those of sea ice (i.e., ice support) and the amount of ice support received depended on which route a penguin took. We also found that birds that took an eastern route traveled significantly further north in two of the 3 years we examined, coinciding with higher velocities of sea ice in those years. We compare our findings to patterns observed in migrating species that utilize air or water currents for their travel and with other studies showing the importance of ocean/sea-ice circulation patterns to wildlife movement and life history patterns within the Ross Sea. Changes in sea ice may have consequences not only for energy expenditure but, by altering migration and movement pathways, to the ecological interactions that exist in this region.


Assuntos
Spheniscidae , Humanos , Animais , Estações do Ano , Ecossistema , Camada de Gelo , Clima , Animais Selvagens , Regiões Antárticas
4.
Proc Natl Acad Sci U S A ; 120(46): e2306840120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37931108

RESUMO

Unlike in many polar regions, the spatial extent and duration of the sea ice season have increased in the Ross Sea sector of the Southern Ocean during the satellite era. Simultaneously, populations of Adélie penguins, a sea ice obligate, have been stable or increasing in the region. Relationships between Adélie penguin population growth and sea ice concentration (SIC) are complex, with sea ice driving different, sometimes contrasting, demographic patterns. Adélie penguins undergo a complete molt annually, replacing all their feathers while fasting shortly after the breeding season. Unlike most penguin species, a majority of Adélies are thought to molt on sea ice, away from the breeding colonies, which makes this period particularly difficult to study. Here, we evaluate the hypothesis that persistent areas of high SIC provide an important molting habitat for Adélie penguins. We analyzed data from geolocating dive recorders deployed year-round on 195 adult penguins at two colonies in the Ross Sea from 2017 to 2019. We identified molt by detecting extended gaps in postbreeding diving activity and used associated locations to define two key molting areas. Remotely sensed data indicated that SIC during molt was anomalously low during the study and has declined in the primary molt area since 1980. Further, annual return rates of penguins to breeding colonies were positively correlated with SIC in the molt areas over 20 y. Together these results suggest that sea ice conditions during Adélie penguin molt may represent a previously underappreciated annual bottleneck for adult survival.


Assuntos
Spheniscidae , Animais , Camada de Gelo , Muda , Estações do Ano , Ecossistema , Regiões Antárticas
5.
Proc Biol Sci ; 290(1991): 20222237, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36651046

RESUMO

Host susceptibility to parasites is mediated by intrinsic and external factors such as genetics, ecology, age and season. While waterfowl are considered central to the reservoir community for low pathogenic avian influenza A viruses (LPAIV), the role of host phylogeny has received limited formal attention. Herein, we analysed 12 339 oropharyngeal and cloacal swabs and 10 826 serum samples collected over 11 years from wild birds in Australia. As well as describing age and species-level differences in prevalence and seroprevalence, we reveal that host phylogeny is a key driver in host range. Seasonality effects appear less pronounced than in the Northern Hemisphere, while annual variations are potentially linked to El Niño-Southern Oscillation. Our study provides a uniquely detailed insight into the evolutionary ecology of LPAIV in its avian reservoir community, defining distinctive processes on the continent of Australia and expanding our understanding of LPAIV globally.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Filogenia , Influenza Aviária/epidemiologia , Estudos Soroepidemiológicos , Austrália , Animais Selvagens , Aves
6.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536868

RESUMO

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Austrália/epidemiologia , Aves , Patos , Variação Genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia
7.
Mov Ecol ; 10(1): 13, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287747

RESUMO

BACKGROUND: In migratory species, the extent of within- and between-individual variation in migratory strategies can influence potential rates and directions of responses to environmental changes. Quantifying this variation requires tracking of many individuals on repeated migratory journeys. At temperate and higher latitudes, low levels of within-individual variation in migratory behaviours are common and may reflect repeated use of predictable resources in these seasonally-structured environments. However, variation in migratory behaviours in the tropics, where seasonal predictability of food resources can be weaker, remains largely unknown. METHODS: Round Island petrels (Pterodroma sp.) are tropical, pelagic seabirds that breed all year round and perform long-distance migrations. Using multi-year geolocator tracking data from 62 individuals between 2009 and 2018, we quantify levels of within- and between-individual variation in non-breeding distributions and timings. RESULTS: We found striking levels of between-individual variation in at-sea movements and timings, with non-breeding migrations to different areas occurring across much of the Indian Ocean and throughout the whole year. Despite this, repeat-tracking of individual petrels revealed remarkably high levels of spatial and temporal consistency in within-individual migratory behaviour, particularly for petrels that departed at similar times in different years and for those departing in the austral summer. However, while the same areas were used by individuals in different years, they were not necessarily used at the same times during the non-breeding period. CONCLUSIONS: Even in tropical systems with huge ranges of migratory routes and timings, our results suggest benefits of consistency in individual migratory behaviours. Identifying the factors that drive and maintain between-individual variation in migratory behaviour, and the consequences for breeding success and survival, will be key to understanding the consequences of environmental change across migratory ranges.

9.
Glob Chang Biol ; 28(3): 829-847, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862835

RESUMO

In seasonal environments subject to climate change, organisms typically show phenological changes. As these changes are usually stronger in organisms at lower trophic levels than those at higher trophic levels, mismatches between consumers and their prey may occur during the consumers' reproduction period. While in some species a trophic mismatch induces reductions in offspring growth, this is not always the case. This variation may be caused by the relative strength of the mismatch, or by mitigating factors like increased temperature-reducing energetic costs. We investigated the response of chick growth rate to arthropod abundance and temperature for six populations of ecologically similar shorebirds breeding in the Arctic and sub-Arctic (four subspecies of Red Knot Calidris canutus, Great Knot C. tenuirostris and Surfbird C. virgata). In general, chicks experienced growth benefits (measured as a condition index) when hatching before the seasonal peak in arthropod abundance, and growth reductions when hatching after the peak. The moment in the season at which growth reductions occurred varied between populations, likely depending on whether food was limiting growth before or after the peak. Higher temperatures led to faster growth on average, but could only compensate for increasing trophic mismatch for the population experiencing the coldest conditions. We did not find changes in the timing of peaks in arthropod availability across the study years, possibly because our series of observations was relatively short; timing of hatching displayed no change over the years either. Our results suggest that a trend in trophic mismatches may not yet be evident; however, we show Arctic-breeding shorebirds to be vulnerable to this phenomenon and vulnerability to depend on seasonal prey dynamics.


Assuntos
Mudança Climática , Reprodução , Regiões Árticas , Estações do Ano , Temperatura
10.
Nat Commun ; 12(1): 4780, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362899

RESUMO

Globally, bird migration is occurring earlier in the year, consistent with climate-related changes in breeding resources. Although often attributed to phenotypic plasticity, there is no clear demonstration of long-term population advancement in avian migration through individual plasticity. Using direct observations of bar-tailed godwits (Limosa lapponica) departing New Zealand on a 16,000-km journey to Alaska, we show that migration advanced by six days during 2008-2020, and that within-individual advancement was sufficient to explain this population-level change. However, in individuals tracked for the entire migration (50 total tracks of 36 individuals), earlier departure did not lead to earlier arrival or breeding in Alaska, due to prolonged stopovers in Asia. Moreover, changes in breeding-site phenology varied across Alaska, but were not reflected in within-population differences in advancement of migratory departure. We demonstrate that plastic responses can drive population-level changes in timing of long-distance migration, but also that behavioral and environmental constraints en route may yet limit adaptive responses to global change.


Assuntos
Adaptação Fisiológica , Migração Animal/fisiologia , Aves/fisiologia , Charadriiformes/fisiologia , Alaska , Animais , Ásia , Cruzamento , Mudança Climática , Feminino , Masculino , Nova Zelândia , Estações do Ano
11.
Oecologia ; 197(2): 339-352, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34309704

RESUMO

Sexual segregation, the differential space, habitat or resource use by males and females, can have profound implications for conservation, as one sex may be more vulnerable to environmental and anthropogenic stressors. The drivers of sexual segregation, such as sex differences in body size, breeding constraints, and social behaviour, have been well studied in adults but are poorly understood in immature animals. To determine whether sexual segregation occurs in juvenile Antarctic fur seals, Arctocephalus gazella, and investigate the underlying drivers, we deployed Global Location Sensors on 26 males and 19 females of 1-3 years of age at Bird Island, South Georgia. Sexual segregation occurred in foraging distribution, primarily in latitude, with females foraging closer to South Georgia and the Polar Front, and males foraging further south near the Antarctic Peninsula. This segregation was particularly evident in Feb-Apr and May-Nov, and males spent more time hauled out than females in May-Nov. Although juveniles have no immediate reproductive commitments, reproductive selection pressures are still likely to operate and drive sex differences in body size, risk-taking, and social roles. These factors, coupled with prey distribution, likely contributed to sexual segregation in juvenile Antarctic fur seals. Consequently, male and female juveniles may compete with different fisheries and respond differently to environmental change, highlighting the importance of considering sex and age groups in species conservation efforts.


Assuntos
Otárias , Animais , Regiões Antárticas , Ecossistema , Feminino , Ilhas , Masculino , Caracteres Sexuais
12.
Nature ; 591(7849): 203-204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658671

Assuntos
Aves , Animais
13.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33627387

RESUMO

Australian lineages of avian influenza A viruses (AIVs) are thought to be phylogenetically distinct from those circulating in Eurasia and the Americas, suggesting the circulation of endemic viruses seeded by occasional introductions from other regions. However, processes underlying the introduction, evolution and maintenance of AIVs in Australia remain poorly understood. Waders (order Charadriiformes, family Scolopacidae) may play a unique role in the ecology and evolution of AIVs, particularly in Australia, where ducks, geese, and swans (order Anseriformes, family Anatidae) rarely undertake intercontinental migrations. Across a 5-year surveillance period (2011 to 2015), ruddy turnstones (Arenaria interpres) that "overwinter" during the Austral summer in southeastern Australia showed generally low levels of AIV prevalence (0 to 2%). However, in March 2014, we detected AIVs in 32% (95% confidence interval [CI], 25 to 39%) of individuals in a small, low-density, island population 90 km from the Australian mainland. This epizootic comprised three distinct AIV genotypes, each of which represent a unique reassortment of Australian-, recently introduced Eurasian-, and recently introduced American-lineage gene segments. Strikingly, the Australian-lineage gene segments showed high similarity to those of H10N7 viruses isolated in 2010 and 2012 from poultry outbreaks 900 to 1,500 km to the north. Together with the diverse geographic origins of the American and Eurasian gene segments, these findings suggest extensive circulation and reassortment of AIVs within Australian wild birds over vast geographic distances. Our findings indicate that long-term surveillance in waders may yield unique insights into AIV gene flow, especially in geographic regions like Oceania, where Anatidae species do not display regular inter- or intracontinental migration.IMPORTANCE High prevalence of avian influenza viruses (AIVs) was detected in a small, low-density, isolated population of ruddy turnstones in Australia. Analysis of these viruses revealed relatively recent introductions of viral gene segments from both Eurasia and North America, as well as long-term persistence of introduced gene segments in Australian wild birds. These data demonstrate that the flow of viruses into Australia may be more common than initially thought and that, once introduced, these AIVs have the potential to be maintained within the continent. These findings add to a growing body of evidence suggesting that Australian wild birds are unlikely to be ecologically isolated from the highly pathogenic H5Nx viruses circulating among wild birds throughout the Northern Hemisphere.


Assuntos
Animais Selvagens/virologia , Charadriiformes/virologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H10N7 , Influenza Aviária , Aves Domésticas/virologia , Migração Animal , Animais , Austrália , Fluxo Gênico , Genes Virais , Vírus da Influenza A Subtipo H10N7/genética , Vírus da Influenza A Subtipo H10N7/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Prevalência , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação
14.
J Anim Ecol ; 90(9): 2005-2014, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232515

RESUMO

Many migratory birds are declining worldwide. In line with the general causes for the global biodiversity crisis, habitat loss, pollution, hunting, over-exploitation and climate change are thought to be at the basis of these population declines. Long-distance migrants seem especially vulnerable to rapid anthropogenic change, yet, the rate of decline across populations and species varies greatly within flyways. We hypothesize that differences in migration strategy, and notably stopover-site use, may be at the basis of these variations in resilience to global change. By identifying and comparing the migration strategies of two very closely related shorebird species, the Curlew sandpiper Calidris ferruginea and the Red-necked stint Calidris ruficollis, migrating from the same non-breeding site in Australia to similar breeding sites in the high Russian Arctic, we aimed to explain why these two species express differential resilience to rapid changes within their flyway resulting in different population trajectories in recent times. Based on 13 Curlew sandpiper and 16 Red-necked stint tracks from light-level geolocator tags, we found that individual Curlew sandpipers make use of fewer stopover areas along the flyway compared to Red-necked stints. Furthermore, and notably during northward migration, Curlew sandpipers have a higher dependency on fewer sites, both in terms of the percentage of individuals visiting key stopover sites and the relative time spent at those sites. While Curlew sandpipers rely mainly on the Yellow Sea region, which has recently experienced a sharp decline in suitable habitat, Red-necked stints make use of additional sites and spread their relative time en-route across sites more evenly. Our results indicate that differential migration strategies may explain why Curlew sandpipers within the East Asian-Australasian Flyway are declining rapidly (9.5%-5.5% per year) while Red-necked stints remain relatively stable (-3.1%-0%). We consider that more generally, the number of sites per individual and among a population, the spatial distribution across the flyway, as well as the relationship between the time spent over sites may prove to be key variables explaining populations and species' differential resilience to environmental change.


Assuntos
Migração Animal , Charadriiformes , Animais , Aves , Mudança Climática , Ecossistema
15.
Sci Rep ; 10(1): 21232, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311583

RESUMO

Many birds wintering in the Indian subcontinent fly across the Himalayas during migration, including Bar-headed Geese (Anser indicus), Demoiselle Cranes (Anthropoides virgo) and Ruddy Shelducks (Tadorna ferruginea). However, little is known about whether shorebirds migrate across the Himalayas from wintering grounds beyond the Indian subcontinent. Using geolocators and satellite tracking devices, we demonstrate for the first time that Common Redshanks (Tringa totanus) and Whimbrels (Numenius phaeopus) wintering in Singapore can directly fly over the Himalayas to reach breeding grounds in the Qinghai-Tibet Plateau and north-central Russia respectively. The results also show that migratory shorebirds wintering in Southeast Asia can use both the Central Asian Flyway and the East Asian-Australasian Flyway. For Redshanks, westerly-breeding birds crossed the Himalayas while more easterly breeders on the Plateau migrated east of the Himalayas. For Whimbrels, an individual that crossed the Himalayas was probably from a breeding population that was different from the others that migrated along the coast up the East Asian-Australasian Flyway. The minimum required altitude of routes of trans-Himalayan Redshanks were no higher on average than those of eastern migrants, but geolocator temperature data indicate that birds departing Singapore flew at high elevations even when not required to by topography, suggesting that the Himalayan mountain range may be less of a barrier than assumed.


Assuntos
Altitude , Migração Animal/fisiologia , Charadriiformes/fisiologia , Animais , Sudeste Asiático , Aves , Cruzamento , Patos , Gansos , Federação Russa , Singapura , Tibet
16.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771254

RESUMO

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Assuntos
Migração Animal , Aves , Animais , Filogenia , Viés de Publicação , Estações do Ano
17.
J Anim Ecol ; 89(1): 221-236, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31190329

RESUMO

Light-level geolocator tags use ambient light recordings to estimate the whereabouts of an individual over the time it carried the device. Over the past decade, these tags have emerged as an important tool and have been used extensively for tracking animal migrations, most commonly small birds. Analysing geolocator data can be daunting to new and experienced scientists alike. Over the past decades, several methods with fundamental differences in the analytical approach have been developed to cope with the various caveats and the often complicated data. Here, we explain the concepts behind the analyses of geolocator data and provide a practical guide for the common steps encompassing most analyses - annotation of twilights, calibration, estimating and refining locations, and extraction of movement patterns - describing good practices and common pitfalls for each step. We discuss criteria for deciding whether or not geolocators can answer proposed research questions, provide guidance in choosing an appropriate analysis method and introduce key features of the newest open-source analysis tools. We provide advice for how to interpret and report results, highlighting parameters that should be reported in publications and included in data archiving. Finally, we introduce a comprehensive supplementary online manual that applies the concepts to several datasets, demonstrates the use of open-source analysis tools with step-by-step instructions and code and details our recommendations for interpreting, reporting and archiving.


Assuntos
Migração Animal , Aves , Animais
18.
Emerg Infect Dis ; 25(10): 1903-1910, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31538564

RESUMO

Highly pathogenic avian influenza (HPAI) H5Nx viruses of the goose/Guangdong/96 lineage continue to cause outbreaks in poultry and wild birds globally. Shorebirds, known reservoirs of avian influenza viruses, migrate from Siberia to Australia along the East-Asian-Australasian Flyway. We examined whether migrating shorebirds spending nonbreeding seasons in Australia were exposed to HPAI H5 viruses. We compared those findings with those for a resident duck species. We screened >1,500 blood samples for nucleoprotein antibodies and tested positive samples for specific antibodies against 7 HPAI H5 virus antigens and 2 low pathogenicity avian influenza H5 virus antigens. We demonstrated the presence of hemagglutinin inhibitory antibodies against HPAI H5 virus clade 2.3.4.4 in the red-necked stint (Calidris ruficolis). We did not find hemagglutinin inhibitory antibodies in resident Pacific black ducks (Anas superciliosa). Our study highlights the potential role of long-distance migratory shorebirds in intercontinental spread of HPAI H5 viruses.


Assuntos
Charadriiformes/virologia , Vírus da Influenza A , Influenza Aviária/epidemiologia , Migração Animal , Animais , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Austrália , Patos/virologia , Vírus da Influenza A/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia
19.
Ecol Evol ; 9(3): 1394-1402, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805168

RESUMO

As a key parameter in population dynamics, mortality rates are frequently estimated using mark-recapture data, which requires extensive, long-term data sets. As a potential rapid alternative, we can measure variables correlated to age, allowing the compilation of population age distributions, from which mortality rates can be derived. However, most studies employing such techniques have ignored their inherent inaccuracy and have thereby failed to provide reliable mortality estimates. In this study, we present a general statistical model linking birth rate, mortality rate, and population age distributions. We next assessed the reliability and data needs (i.e., sample size) for estimating mortality rate of eight different aging techniques. The results revealed that for half of the aging techniques, correlations with age varied considerably, translating into highly variable accuracies when used to estimate mortality rate from age distributions. Telomere length is generally not sufficiently correlated to age to provide reliable mortality rate estimates. DNA methylation, signal-joint T-cell recombination excision circle (sjTREC), and racemization are generally more promising techniques to ultimately estimate mortality rate, if a sufficiently high sample size is available. Otolith ring counts, otolithometry, and age-length keys in fish, and skeletochronology in reptiles, mammals, and amphibians, outperformed all other aging techniques and generated relatively accurate mortality rate estimation with a sample size that can be feasibly obtained. Provided the method chosen is minimizing and estimating the error in age estimation, it is possible to accurately estimate mortality rates from age distributions. The method therewith has the potential to estimate a critical, population dynamic parameter to inform conservation efforts within a limited time frame as opposed to mark-recapture analyses.

20.
J Appl Ecol ; 55(6): 2963-2975, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30337766

RESUMO

Migratory birds are an increasing focus of interest when it comes to infection dynamics and the spread of avian influenza viruses (AIV). However, we lack detailed understanding migratory birds' contribution to local AIV prevalence levels and their downstream socio-economic costs and threats.To explain the potential differential roles of migratory and resident birds in local AIV infection dynamics, we used a susceptible-infectious-recovered (SIR) model. We investigated five (mutually non- exclusive) mechanisms potentially driving observed prevalence patterns: 1) a pronounced birth pulse (e.g. the synchronised annual influx of immunologically naïve individuals), 2) short-term immunity, 3) increase of susceptible migrants, 4) differential susceptibility to infection (i.e. transmission rate) for migrants and residents, and 5) replacement of migrants during peak migration.SIR models describing all possible combinations of the five mechanisms were fitted to individual AIV infection data from a detailed longitudinal surveillance study in the partially migratory mallard duck (Anas platyrhynchos). During autumn and winter, the local resident mallard community also held migratory mallards that exhibited distinct AIV infection dynamics.Replacement of migratory birds during peak migration in autumn was found to be the most important mechanism driving the variation in local AIV infection patterns. This suggests that a constant influx of migratory birds, likely immunological naïve to locally circulating AIV strains, is required to predict the observed temporal prevalence patterns and the distinct differences in prevalence between residents and migrants.Synthesis and applications. Our analysis reveals a key mechanism that could explain the amplifying role of migratory birds in local avian influenza virus infection dynamics; the constant flow and replacement of migratory birds during peak migration. Aside from monitoring efforts, in order to achieve adequate disease management and control in wildlife - with knock-on effects for livestock and humans, - we conclude that it is crucial, in future surveillance studies, to record host demographical parameters such as population density, timing of birth and turnover of migrants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...