Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 94: 106306, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36709727

RESUMO

The research for "green" and economically feasible approaches such as (photo)catalysis especially for biomass valorization such as selective oxidation of biomass derived compounds like aromatic alcohols to corresponding aldehyde by avoiding the harsh reaction conditions and the addition of reagents concentrate the focus of attention the last years. Hence, design and development of novel photocatalyst for the partial selective oxidation is highly desirable. In this research work, ultrasonication of different frequencies (22, 40, 80 kHz) and different amplitudes was utilized as synthesis tool in order to obtain novel materials by precipitation method. The synthesized samples were characterized by using different techniques such as N2 sorption, TEM, XPS, XRD, thermal analysis, and diffuse reflectance spectroscopy. The synthesized sample by using low ultrasound frequency (22 kHz) and amplitude showed a mixed morphological and structural nature consisting of asymmetric 1-dimensional (nanorods-like), layered nano-structures and not well-defined areas, leading to elevate for metal oxide specific surface areas up to 155 m2/g. The observed 1-D nanostructures have diamentions in the range of 20-60 nm. This sample revealed the highest photo-oxidation efficiency for the selective conversion of two biomass-derived, and more specifically lignin-inspired model compounds, benzyl alcohol and cinnamyl alcohol to benzaldehyde and cinnamyl aldehyde, respectively, and hence the highest yield towards the desired aldehydes. The selective photo-oxidation activity was retained even after 5 photocatalytic cycles, while no leaching of Ti was recorded.

2.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557862

RESUMO

The challenge of improving the activity of TiO2 by modifying it with metals and using it for targeted applications in microreactor environments is an active area of research. Recently, microreactors have emerged as successful candidates for many photocatalytic reactions, especially for the selective oxidation process. The current work introduces ultrasound-assisted catalyst deposition on the inner walls of a perfluoro-alkoxy alkane (PFA) microtube under mild conditions. We report Cu-Au/TiO2 and Fe-Au/TiO2 nanoparticles synthesized using the sol-gel method. The obtained photocatalysts were thoroughly characterized by UV-Vis diffuse-reflectance spectroscopy (DRS), high-resolution scanning electron microscopy (HR-SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and N2 physisorption. The photocatalytic activity under UV (375 nm) and visible light (515 nm) was estimated by the oxidation of lignin-based model aromatic alcohols in batch and fluoropolymer-based flow systems. The bimetallic catalyst exhibited improved photocatalytic selective oxidation. Herein, four aromatic alcohols were individually investigated and compared. In our experiments, the alcohols containing hydroxy and methoxy groups (coniferyl and vanillin alcohol) showed high conversion (93% and 52%, respectively) with 8% and 17% selectivity towards their respective aldehydes, with the formation of other side products. The results offer an insight into ligand-to-metal charge transfer (LMCT) complex formation, which was found to be the main reason for the activity of synthesized catalysts under visible light.


Assuntos
Lignina , Nanopartículas , Difração de Raios X , Nanopartículas/química , Titânio/química , Álcoois , Catálise
4.
ChemSusChem ; 14(5): 1351-1362, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33453092

RESUMO

Solar energy-driven processes for biomass valorization are priority for the growing industrialized society. To address this challenge, efficient visible light-active photocatalyst for the selective oxidation of biomass-derived platform chemical is highly desirable. Herein, selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) was achieved by visible light-driven photocatalysis over titania. Pristine titania is photocatalytically inactive under visible light, so an unconventional approach was employed for the visible light (λ=515 nm) sensitization of titania via a formation of a visible light-absorbing complex of HMF (substrate) on the titania surface. Surface-complexation of HMF on titania mediated ligand-to-metal charge transfer (LMCT) under visible light, which efficiently catalyzed the oxidation of HMF to DFF. A high DFF selectivity of 87 % was achieved with 59 % HMF conversion after 4 h of illumination. The apparent quantum yield obtained for DFF production was calculated to be 6.3 %. It was proposed that the dissociative interaction of hydroxyl groups of HMF and the titania surface is responsible for the surface-complex formation. When the hydroxyl groups of titania were modified via surface-fluorination or calcination the oxidation of HMF was inhibited under visible light, signifying that hydroxyl groups are decisive for photocatalytic activity.

5.
RSC Adv ; 11(55): 34996-35010, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494738

RESUMO

Developing functional materials from biomass is a significant research subject due to its unique structure, abundant availability, biodegradability and low cost. A series of chitosan-lignin (CL) composites were prepared through a hydrothermal method by varying the weight ratio of chitosan and lignin. Subsequently, these CL composites were combined with titania (T) to form a nanocomposite (T/CL) using sol-gel and hydrothermal based methods. T/CL nanocomposites exhibited improved photocatalytic performance in comparison with sol-gel and hydrothermally prepared pristine titania (SGH-TiO2), towards the selective oxidation of benzyl alcohol (BnOH) to benzaldehyde (Bnald) under UV (375 nm) and visible light (515 nm). More specifically, the 75T/CL(25 : 75) nanocomposite (a representative photocatalyst from the 75T/CL nanocomposite series) showed very high selectivity (94%) towards Bnald at 55% BnOH conversion under UV light. Whereas, SGH-TiO2 titania exhibited much lower (68%) selectivity for Bnald at similar BnOH conversion. Moreover, the 75T/CL(25 : 75) nanocomposite also showed excellent Bnald selectivity (100%) at moderate BnOH conversion (19%) under visible light. Whereas, SGH-TiO2 did not show any activity for BnOH oxidation under visible light. XPS studies suggest that the visible light activity of the 75T/CL(25 : 75) nanocomposite is possibly related to the doping of nitrogen into titania from chitosan. However, according to UV-visible-DRS results, no direct evidence pertaining to the decrease in band-gap energy of titania was found upon coupling with the CL composite and the visible light activity was attributed to N-doping of titania. Overall, it was found that T/CL nanocomposites enhanced the photocatalytic performance of titania via improved light harvesting and higher selectivity through mediation of active radical species.

6.
Ultrason Sonochem ; 38: 189-196, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28633818

RESUMO

Fe3+/TiO2/zeolite Y photocatalyst synthesized by using sonophotodeposition method was compared with photocatalysts prepared by simple photodeposition and sonodeposition methods in order to clarify the role of light irradiation and ultrasounds while they are used simultaneously. To gain an insight into the mechanism of this method a detailed characterization of the photocatalysts was carried out by means of the following techniques: UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, Mössbauer measurements and photocatalytic test reaction. Basing on the results from these techniques the chemical role of light and mainly mechanical role of ultrasound were observed. The selective photocatalytic oxidation of benzyl alcohol into benzaldehyde in liquid phase was a test reaction verifying the utility of the prepared materials. The best photocatalytic efficiency in this reaction was performed by photocatalyst synthesized using compilation of ultrasound energy with photoexcitation.

7.
ChemSusChem ; 8(10): 1676-85, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25677211

RESUMO

The aim of this work is to develop bimetallic Pd-Au/TiO2 P90 systems, which are highly active and selective for the photocatalytic oxidation of methanol to form methyl formate. Modification of commercial TiO2 P90 with Pd-Au nanoparticles was successfully achieved for the first time by means of a sonophotodeposition (SPD) method. The prepared materials were characterized by TEM, UV/Vis spectroscopy, X-ray photoelectron spectroscopy, and powder XRD. The Pd-Au bimetallic nanoparticles supported on titania exhibited remarkably enhanced catalytic activity in selective methanol oxidation to form methyl formate due to the synergism of Au and Pd particles, as well as the strong interaction between TiO2 and Pd-Au. SPD is a green methodology that can be used to prepare well-defined bimetallic surfaces on semiconductor supports with great promise for catalytic applications, in which selectivity can be tuned through adjustment of the surface composition.


Assuntos
Ésteres do Ácido Fórmico/química , Ouro/química , Nanopartículas Metálicas/química , Metanol/química , Paládio/química , Titânio/química , Catálise , Luz , Nanopartículas Metálicas/efeitos da radiação , Oxirredução , Sonicação , Titânio/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...