Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 90(7): 3439-45, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764000

RESUMO

UNLABELLED: Previous experiments carried out in a sheep scrapie model demonstrated that the transfusion of 200 µl of prion-infected whole blood has an apparent 100% efficacy for disease transmission. These experiments also indicated that, despite the apparent low infectious titer, the intravenous administration of white blood cells (WBC) resulted in efficient disease transmission. In the study presented here, using the same transmissible spongiform encephalopathy (TSE) animal model, our aim was to determine the minimal number of white blood cells and the specific abilities of mononucleated cell populations to transmit scrapie by the transfusion route. Our results confirmed that the transfusion of 100 µl, but not 10 µl, of fresh whole blood collected in asymptomatic scrapie-infected donor sheep can transmit the disease. The data also show that the intravenous administration of 10(5) WBCs is sufficient to cause scrapie in recipient sheep. Cell-sorted CD45R(+) (predominantly B lymphocytes), CD4(+)/CD8(+) (T lymphocytes), and CD14(+) (monocytes/macrophages) blood cell subpopulations all were shown to contain prion infectivity by bioassays in ovine PrP transgenic mice. However, while the intravenous administration of 10(6) CD45(+) or CD4(+)/8(+) living cells was able to transmit the disease, similar numbers of CD14(+) cells failed to infect the recipients. These data support the contention that mononucleated blood cell populations display different abilities to transmit TSE by the transfusion route. They also represent an important input for the risk assessment of blood-borne prion disease transmission and for refining the target performance of leukoreduction processes that currently are applied to mitigate the transmission risk in transfusion medicine. IMPORTANCE: Interindividual variant Creutzfeldt-Jakob disease (vCJD) transmission through blood and blood-derived products is considered a major public health issue in transfusion medicine. Over the last decade, TSE in sheep has emerged as a relevant model for assessing the blood-borne vCJD transmission risk. In this study, using a sheep TSE model, we characterized the ability of different peripheral blood mononucleated cell populations to infect TSE-free recipients by the transfusion route. Our results indicate that as little as 10(5) WBC and 100 µl of blood collected from asymptomatic scrapie infected animals can transmit the disease. They also demonstrate unambiguously that peripheral blood mononuclear cell subpopulations display dramatically different abilities to transmit the disease. These data represent an important input for the risk assessment of blood-borne prion disease transmission and for refining the target performance of leukoreduction processes that currently are applied to mitigate the transmission risk in transfusion medicine.


Assuntos
Leucócitos Mononucleares/transplante , Scrapie/sangue , Scrapie/transmissão , Reação Transfusional , Animais , Linfócitos B/transplante , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Modelos Animais de Doenças , Macrófagos/transplante , Camundongos , Ovinos , Linfócitos T/transplante
2.
PLoS Pathog ; 10(6): e1004202, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945656

RESUMO

The emergence of variant Creutzfeldt Jakob Disease (vCJD) is considered a likely consequence of human dietary exposure to Bovine Spongiform Encephalopathy (BSE) agent. More recently, secondary vCJD cases were identified in patients transfused with blood products prepared from apparently healthy donors who later went on to develop the disease. As there is no validated assay for detection of vCJD/BSE infected individuals the prevalence of the disease in the population remains uncertain. In that context, the risk of vCJD blood borne transmission is considered as a serious concern by health authorities. In this study, appropriate conditions and substrates for highly efficient and specific in vitro amplification of vCJD/BSE agent using Protein Misfolding Cyclic Amplification (PMCA) were first identified. This showed that whatever the origin (species) of the vCJD/BSE agent, the ovine Q171 PrP substrates provided the best amplification performances. These results indicate that the homology of PrP amino-acid sequence between the seed and the substrate is not the crucial determinant of the vCJD agent propagation in vitro. The ability of this method to detect endogenous vCJD/BSE agent in the blood was then defined. In both sheep and primate models of the disease, the assay enabled the identification of infected individuals in the early preclinical stage of the incubation period. Finally, sample panels that included buffy coat from vCJD affected patients and healthy controls were tested blind. The assay identified three out of the four tested vCJD affected patients and no false positive was observed in 141 healthy controls. The negative results observed in one of the tested vCJD cases concurs with results reported by others using a different vCJD agent blood detection assay and raises the question of the potential absence of prionemia in certain patients.


Assuntos
Síndrome de Creutzfeldt-Jakob/diagnóstico , Encefalopatia Espongiforme Bovina/diagnóstico , Testes Hematológicos/métodos , Príons/sangue , Sequência de Aminoácidos , Animais , Bovinos , Síndrome de Creutzfeldt-Jakob/sangue , Síndrome de Creutzfeldt-Jakob/transmissão , Diagnóstico Precoce , Encefalopatia Espongiforme Bovina/sangue , Encefalopatia Espongiforme Bovina/transmissão , Humanos , Macaca fascicularis , Masculino , Ovinos , Suínos
3.
J Virol ; 88(10): 5870-2, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574409

RESUMO

Mice overexpressing the prion protein (PrP) sequence from various host species are widely used for measuring infectious titers in prion disease. However, the impact that the transgene expression level might have on the susceptibility to infection raises some concerns about the final biological relevance of these models. Here we report that endpoint titration of a sheep scrapie isolate in sheep and in mice overexpressing the ovine PrP results in similar estimates of the infectious titer.


Assuntos
Suscetibilidade a Doenças , Expressão Gênica , Proteínas PrPSc/biossíntese , Doenças Priônicas/genética , Animais , Camundongos , Proteínas Recombinantes/biossíntese , Ovinos
4.
PLoS One ; 7(7): e42019, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22860049

RESUMO

The identification in the UK of 4 v-CJD infected patients thought to be due to the use of transfused Red Blood Cell units prepared from blood of donors incubating v-CJD raised major concerns in transfusion medicine. The demonstration of leucocyte associated infectivity using various animal models of TSE infection led to the implementation of systematic leuco-depletion (LD) of Red Blood cells concentrates (RBCs) in a number of countries. In the same models, plasma also demonstrated a significant level of infectivity which raised questions on the impact of LD on the v-CJD transmission risk. The recent development of filters combining LD and the capture of non-leucocyte associated prion infectivity meant a comparison of the benefits of LD alone versus LD/prion-reduction filters (LD/PR) on blood-borne TSE transmission could be made. Due to the similarity of blood/plasma volumes to human transfusion medicine an experimental TSE sheep model was used to characterize the abilities of whole blood, RBCs, plasma and buffy-coat to transmit the disease through the transfusion route. The impact of a standard RBCs LD filter and of two different RBCs LD/PR prototype filters on the disease transmission was then measured. Homologous recipients transfused with whole-blood, buffy-coat and RBCs developed the disease with 100% efficiency. Conversely, plasma, when intravenously administered resulted in an inconstant infection of the recipients and no disease transmission was observed in sheep that received cryo-precipitated fraction or supernatant obtained from infectious plasma. Despite their high efficacy, LD and LD/PR filtration of the Red Blood Cells concentrate did not provide absolute protection from infection. These results support the view that leuco-depletion strongly mitigates the v-CJD blood borne transmission risk and provide information about the relative benefits of prion reduction filters.


Assuntos
Patógenos Transmitidos pelo Sangue , Procedimentos de Redução de Leucócitos , Doenças Priônicas/transmissão , Príons/isolamento & purificação , Animais , Western Blotting , Imuno-Histoquímica , Ovinos
5.
PLoS Pathog ; 8(6): e1002782, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737075

RESUMO

It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 10³ID50 as measured by intracerebral inoculation of tg338 mice (ID50 IC in tg338). This was consistent with a whole blood titer greater than 10³·6ID50 IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation.


Assuntos
Transfusão de Leucócitos/efeitos adversos , Proteínas PrPSc/sangue , Doenças Priônicas/sangue , Doenças Priônicas/transmissão , Animais , Western Blotting , Sobrevivência Celular , Modelos Animais de Doenças , Imuno-Histoquímica , Leucócitos , Camundongos , Camundongos Transgênicos , Ovinos
6.
J Virol ; 86(4): 2056-66, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156536

RESUMO

The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.


Assuntos
Plaquetas/virologia , Modelos Animais de Doenças , Leucócitos Mononucleares/virologia , Camundongos , Doenças Priônicas/veterinária , Doenças Priônicas/virologia , Scrapie/virologia , Animais , Humanos , Camundongos Transgênicos , Doenças Priônicas/transmissão , Scrapie/transmissão , Ovinos
7.
PLoS Pathog ; 7(2): e1001285, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347349

RESUMO

Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrP(Sc) negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed.


Assuntos
Proteínas PrPSc/genética , Proteínas PrPSc/patogenicidade , Scrapie/patologia , Doenças dos Ovinos/patologia , Alelos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Genótipo , Camundongos , Proteínas PrPSc/metabolismo , Scrapie/genética , Scrapie/metabolismo , Ovinos , Doenças dos Ovinos/genética , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...