Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37760847

RESUMO

Resistance to protein tyrosine kinase inhibitors (TKIs) presents a significant challenge in therapeutic target development for cancers such as triple-negative breast cancer (TNBC), where conventional therapies are ineffective at combatting systemic disease. Due to increased expression, the receptor tyrosine kinases EGFR (epidermal growth factor receptor) and c-Met are potential targets for treatment. However, targeted anti-EGFR and anti-c-Met therapies have faced mixed results in clinical trials due to acquired resistance. We hypothesize that adaptive responses in regulatory kinase networks within the EGFR and c-Met signaling axes contribute to the development of acquired erlotinib and cabozantinib resistance. To test this, we developed two separate models for cabozantinib and erlotinib resistance using the MDA-MB-231 and MDA-MB-468 cell lines, respectively. We observed that erlotinib- or cabozantinib-resistant cell lines demonstrate enhanced cell proliferation, migration, invasion, and activation of EGFR or c-Met downstream signaling (respectively). Using a SILAC (Stable Isotope Labeling of Amino acids in Cell Culture)-labeled quantitative mass spectrometry proteomics approach, we assessed the effects of erlotinib or cabozantinib resistance on the phosphoproteome, proteome, and kinome. Using this integrated proteomics approach, we identified several potential kinase mediators of cabozantinib resistance and confirmed the contribution of AKT1 to erlotinib resistance in TNBC-resistant cell lines.

2.
Biochim Biophys Acta Gen Subj ; 1867(10): 130441, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543358

RESUMO

Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.


Assuntos
COVID-19 , Humanos , Pandemias , Caseína Quinase II
3.
Front Mol Biosci ; 9: 909711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755813

RESUMO

Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.

4.
Mol Biol Cell ; 33(3): ar24, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985913

RESUMO

Pannexins (PANX) are a family of three channel-forming membrane glycoproteins expressed in the skin. Previous studies have focused on the role of PANX1 and PANX3 in the regulation of cellular functions in skin cells while PANX2, the largest member of this protein family, has not been investigated. In the current study, we explored the temporal PANX2 expression in murine skin and found that one Panx2 splice variant (Panx2-202) tends to be more abundant at the protein level and is continuously expressed in developed skin. PANX2 was detected in the suprabasal layers of the mouse epidermis and up-regulated in an in vitro model of rat epidermal keratinocyte differentiation. Furthermore, we show that in apoptotic rat keratinocytes, upon UV light B (UVB)-induced caspase-3/7 activation, ectopically overexpressed PANX2 is cleaved in its C-terminal domain at the D416 residue without increasing the apoptotic rate measured by caspase-3/7 activation. Notably, CRISPR-Cas9 mediated genetic deletion of rat Panx2 delays but does not impair caspase-3/7 activation and cytotoxicity in UVB-irradiated keratinocytes. We propose that endogenous PANX2 expression in keratinocytes promotes cell death after UVB insult and may contribute to skin homeostasis.


Assuntos
Conexinas/metabolismo , Proteínas do Tecido Nervoso , Animais , Apoptose , Queratinócitos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Processamento de Proteína Pós-Traducional , Ratos , Raios Ultravioleta
5.
Br J Cancer ; 126(7): 994-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34773100

RESUMO

Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.


Assuntos
Caseína Quinase II , Neoplasias , Apoptose/genética , Pontos de Checagem do Ciclo Celular , Proliferação de Células/genética , Humanos , Neoplasias/tratamento farmacológico
6.
Biomedicines ; 9(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680478

RESUMO

The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer's and Parkinson's diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.

8.
Cell Chem Biol ; 28(4): 546-558.e10, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33484635

RESUMO

Building on the pyrazolopyrimidine CK2 (casein kinase 2) inhibitor scaffold, we designed a small targeted library. Through comprehensive evaluation of inhibitor selectivity, we identified inhibitor 24 (SGC-CK2-1) as a highly potent and cell-active CK2 chemical probe with exclusive selectivity for both human CK2 isoforms. Remarkably, despite years of research pointing to CK2 as a key driver in cancer, our chemical probe did not elicit a broad antiproliferative phenotype in >90% of >140 cell lines when tested in dose-response. While many publications have reported CK2 functions, CK2 biology is complex and an available high-quality chemical tool such as SGC-CK2-1 will be indispensable in deciphering the relationships between CK2 function and phenotypes.


Assuntos
Caseína Quinase II/antagonistas & inibidores , Desenvolvimento de Medicamentos , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
9.
Mol Biol Cell ; 32(5): 376-390, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33405952

RESUMO

Pannexin 1 (PANX1) is a glycoprotein that forms large pore channels capable of passing ions and metabolites such as ATP for cellular communication. PANX1 has been implicated in many diseases including breast cancer and melanoma, where inhibition or deletion of PANX1 reduced the tumorigenic and metastatic properties of the cancer cells. We interrogated the effect of single amino acid changes in various PANX1 domains using naturally occurring variants reported in cancer patient tumors. We found that a previously reported variant (Q5H) is present in cancer cells, but was not different from the wild type (Q5) in glycosylation, trafficking, or channel function and did not affect cellular properties. We discovered that the Q5H variant is in fact the highly conserved ancestral allele of PANX1 with 89% of humans carrying at least one Q5H allele. Another mutated form Y150F, found in a melanoma patient tumor, prevented phosphorylation at Y150 as well as complex N-glycosylation while increasing intracellular localization. Sarcoma (SRC) is the predicted kinase to phosphorylate the Y150 residue, and its phosphorylation is not likely to be constitutive, but rather dynamically regulated. The Y150 phosphorylation site is the first one reported to play a role in regulating posttranslational modifications and trafficking of PANX1, with potential consequences on its large-pore channel structure and function in melanoma cells.


Assuntos
Conexinas/genética , Conexinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Conexinas/fisiologia , Glicosilação , Células HEK293 , Humanos , Melanoma/genética , Melanoma/metabolismo , Mutação , Proteínas do Tecido Nervoso/fisiologia , Fosforilação , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia
10.
Proc Natl Acad Sci U S A ; 115(30): E7081-E7090, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987005

RESUMO

The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.


Assuntos
Adenina , Adutos de DNA/metabolismo , Dano ao DNA , Doença de Huntington/tratamento farmacológico , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacocinética , Adenina/farmacologia , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Animais , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Linhagem Celular Transformada , Adutos de DNA/genética , Modelos Animais de Doenças , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Transdução de Sinais/genética
11.
Blood ; 130(25): 2774-2785, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28928125

RESUMO

Platelets, anucleated megakaryocyte (MK)-derived cells, play a major role in hemostasis and arterial thrombosis. Although protein kinase casein kinase 2 (CK2) is readily detected in MKs and platelets, the impact of CK2-dependent signaling on MK/platelet (patho-)physiology has remained elusive. The present study explored the impact of the CK2 regulatory ß-subunit on platelet biogenesis and activation. MK/platelet-specific genetic deletion of CK2ß (ck2ß-/- ) in mice resulted in a significant macrothrombocytopenia and an increased extramedullar megakaryopoiesis with an enhanced proportion of premature platelets. Although platelet life span was only mildly affected, ck2ß-/- MK displayed an abnormal microtubule structure with a drastically increased fragmentation within bone marrow and a significantly reduced proplatelet formation in vivo. In ck2ß-/- platelets, tubulin polymerization was disrupted, resulting in an impaired thrombopoiesis and an abrogated inositol 1,4,5-triphosphate receptor-dependent intracellular calcium (Ca2+) release. Presumably due to a blunted increase in the concentration of cytosolic Ca2+, activation-dependent increases of α and dense-granule secretion and integrin αIIbß3 activation, and aggregation were abrogated in ck2ß-/- platelets. Accordingly, thrombus formation and stabilization under high arterial shear rates were significantly diminished, and thrombotic vascular occlusion in vivo was significantly blunted in ck2ß-/- mice, accompanied by a slight prolongation of bleeding time. Following transient middle cerebral artery occlusion, ck2ß-/- mice displayed significantly reduced cerebral infarct volumes, developed significantly less neurological deficits, and showed significantly better outcomes after ischemic stroke than ck2ßfl/fl mice. The present observations reveal CK2ß as a novel powerful regulator of thrombopoiesis, Ca2+-dependent platelet activation, and arterial thrombosis in vivo.


Assuntos
Caseína Quinase II/fisiologia , Fragmentos de Peptídeos/fisiologia , Ativação Plaquetária , Trombopoese , Trombose/patologia , Animais , Plaquetas , Sinalização do Cálcio , Caseína Quinase II/deficiência , Megacariócitos/metabolismo , Megacariócitos/patologia , Megacariócitos/ultraestrutura , Camundongos , Camundongos Knockout , Fragmentos de Peptídeos/deficiência , Trombose/etiologia , Trombose/metabolismo
12.
PLoS One ; 12(5): e0177871, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28520795

RESUMO

Baculoviral IAP repeat containing 6 (BIRC6) is a member of the inhibitors of apoptosis proteins (IAPs), a family of functionally and structurally related proteins that inhibit apoptosis. BIRC6 has been implicated in drug resistance in several different human cancers, however mechanisms regulating BIRC6 have not been extensively explored. Our phosphoproteomic analysis of an imatinib-resistant chronic myelogenous leukemia (CML) cell line (MYL-R) identified increased amounts of a BIRC6 peptide phosphorylated at S480, S482, and S486 compared to imatinib-sensitive CML cells (MYL). Thus we investigated the role of BIRC6 in mediating imatinib resistance and compared it to the well-characterized anti-apoptotic protein, Mcl-1. Both BIRC6 and Mcl-1 were elevated in MYL-R compared to MYL cells. Lentiviral shRNA knockdown of BIRC6 in MYL-R cells increased imatinib-stimulated caspase activation and resulted in a ~20-25-fold increase in imatinib sensitivity, without affecting Mcl-1. Treating MYL-R cells with CDK9 inhibitors decreased BIRC6 mRNA, but not BIRC6 protein levels. By contrast, while CDK9 inhibitors reduced Mcl-1 mRNA and protein, they did not affect imatinib sensitivity. Since the Src family kinase Lyn is highly expressed and active in MYL-R cells, we tested the effects of Lyn inhibition on BIRC6 and Mcl-1. RNAi-mediated knockdown or inhibition of Lyn (dasatinib/ponatinib) reduced BIRC6 protein stability and increased caspase activation. Inhibition of Lyn also increased formation of an N-terminal BIRC6 fragment in parallel with reduced amount of the BIRC6 phosphopeptide, suggesting that Lyn may regulate BIRC6 phosphorylation and stability. In summary, our data show that BIRC6 stability is dependent on Lyn, and that BIRC6 mediates imatinib sensitivity independently of Mcl-1 or CDK9. Hence, BIRC6 may be a novel target for the treatment of drug-resistant CML where Mcl-1 or CDK9 inhibitors have failed.


Assuntos
Antineoplásicos/toxicidade , Apoptose , Resistencia a Medicamentos Antineoplásicos/genética , Mesilato de Imatinib/toxicidade , Proteínas Inibidoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
13.
Pharmaceuticals (Basel) ; 10(1)2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28273877

RESUMO

Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.

14.
J Biomater Appl ; 31(7): 1087-1096, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28178901

RESUMO

Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Nanocápsulas/química , Nanosferas/química , Nanosferas/ultraestrutura , Neoplasias Experimentais/química , Propriedades de Superfície , Linhagem Celular Tumoral , Humanos , Teste de Materiais , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Tamanho da Partícula
15.
Clin Cancer Res ; 22(12): 2840-7, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27306791

RESUMO

Protein kinase CK2 (designated CSNK2) is a constitutively active protein kinase with a vast repertoire of putative substrates that has been implicated in several human cancers, including cancer of the breast, lung, colon, and prostate, as well as hematologic malignancies. On the basis of these observations, CSNK2 has emerged as a candidate for targeted therapy, with two CSNK2 inhibitors in ongoing clinical trials. CX-4945 is a bioavailable small-molecule ATP-competitive inhibitor targeting its active site, and CIGB-300 is a cell-permeable cyclic peptide that prevents phosphorylation of the E7 protein of HPV16 by CSNK2. In preclinical models, either of these inhibitors exhibit antitumor efficacy. Furthermore, in combinations with chemotherapeutics such as cisplatin or gemcitabine, either CX-4945 or CIGB-300 promote synergistic induction of apoptosis. While CSNK2 is a regulatory participant in many processes related to cancer, its potential to modulate caspase action may be particularly pertinent to its emergence as a therapeutic target. Because the substrate recognition motifs for CSNK2 and caspases are remarkably similar, CSNK2 can block the cleavage of many caspase substrates through the phosphorylation of sites adjacent to cleavage sites. Phosphoproteomic strategies have also revealed previously underappreciated roles for CSNK2 in the phosphorylation of several key constituents of DNA damage and DNA repair pathways. Going forward, applications of proteomic strategies to interrogate responses to CSNK2 inhibitors are expected to reveal signatures for CSNK2 inhibition and molecular insights to guide new strategies to interfere with its potential to inhibit caspase action or enhance the susceptibility of cancer cells to DNA damage. Clin Cancer Res; 22(12); 2840-7. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Naftiridinas/farmacologia , Neoplasias/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Trifosfato de Adenosina/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Caseína Quinase II/antagonistas & inibidores , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Humanos , Neoplasias/patologia , Proteínas E7 de Papillomavirus/metabolismo , Fenazinas , Fosforilação/efeitos dos fármacos
16.
Mol Biol Cell ; 27(2): 277-94, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564797

RESUMO

Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22ß), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22ß(-/-) Sertoli cells moved faster than wild-type cells. In addition, GAR22ß(-/-) cells showed a more prominent focal adhesion turnover. GAR22ß overexpression or its reexpression in GAR22ß(-/-) cells reduced cell motility and focal adhesion turnover. GAR22ß-actin interaction was stronger than GAR22ß-microtubule interaction, resulting in GAR22ß localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22ß interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22ß-EB1 interaction was required for the ability of GAR22ß to modulate cell motility. We found that GAR22ß is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22ß as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.


Assuntos
Movimento Celular/fisiologia , Proteínas dos Microfilamentos/metabolismo , Motilidade dos Espermatozoides/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Axonema/metabolismo , Axonema/fisiologia , Adesão Celular/fisiologia , Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células NIH 3T3 , Estrutura Terciária de Proteína , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatozoides/metabolismo
17.
Proc Natl Acad Sci U S A ; 112(38): E5246-52, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26372956

RESUMO

Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein.


Assuntos
Caspase 3/metabolismo , Músculo Esquelético/metabolismo , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinases/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fosforilação , Proteínas Recombinantes/metabolismo , Regeneração , Homologia de Sequência de Aminoácidos , Células-Tronco/citologia
18.
Biochim Biophys Acta ; 1850(10): 2077-86, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25766872

RESUMO

BACKGROUND: Protein phosphorylation is a universal regulatory mechanism that involves an extensive network of protein kinases. The discovery of the phosphorylation-dependent peptidyl-prolyl isomerase Pin1 added an additional layer of complexity to these regulatory networks. SCOPE OF REVIEW: We have evaluated interactions between Pin1 and the regulatory kinome and proline-dependent phosphoproteome taking into consideration findings from targeted studies as well as data that has emerged from systematic phosphoproteomic workflows and from curated protein interaction databases. MAJOR CONCLUSIONS: The relationship between Pin1 and the regulatory protein kinase networks is not restricted simply to the recognition of proteins that are substrates for proline-directed kinases. In this respect, Pin1 itself is phosphorylated in cells by protein kinases that modulate its functional properties. Furthermore, the phosphorylation-dependent targets of Pin1 include a number of protein kinases as well as other enzymes such as phosphatases and regulatory subunits of kinases that modulate the actions of protein kinases. GENERAL SIGNIFICANCE: As a result of its interactions with numerous protein kinases and their substrates, as well as itself being a target for phosphorylation, Pin1 has an intricate relationship with the regulatory protein kinase and phosphoproteomic networks that orchestrate complex cellular processes and respond to environmental cues. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.


Assuntos
Peptidilprolil Isomerase/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Animais , Humanos , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação/fisiologia , Proteínas Quinases/genética , Proteoma/genética
19.
Biochim Biophys Acta ; 1852(5): 905-12, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25595659

RESUMO

Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that plays a critical role in mediating protein conformational changes involved in signaling processes related to cell cycle control. Pin1 has also been implicated as being neuroprotective in aging-related neurodegenerative disorders including Alzheimer's disease where Pin1 activity is diminished. Notably, recent proteomic analysis of brain samples from patients with mild cognitive impairment revealed that Pin1 is oxidized and also displays reduced activity. Since the Pin1 active site contains a functionally critical cysteine residue (Cys113) with a low predicted pK(a), we hypothesized that Cys113 is sensitive to oxidation. Consistent with this hypothesis, we observed that treatment of Pin1 with hydrogen peroxide results in a 32Da mass increase, likely resulting from the oxidation of Cys113 to sulfinic acid (Cys-SO(2)H). This modification results in loss of peptidyl-prolyl isomerase activity. Notably, Pin1 with Cys113 substituted by aspartic acid retains activity and is no longer sensitive to oxidation. Structural studies by X-ray crystallography revealed increased electron density surrounding Cys113 following hydrogen peroxide treatment. At lower concentrations of hydrogen peroxide, oxidative inhibition of Pin1 can be partially reversed by treatment with dithiothreitol, suggesting that oxidation could be a reversible modification with a regulatory role. We conclude that the loss of Pin1 activity upon oxidation results from oxidative modification of the Cys113 sulfhydryl to sulfenic (Cys-SOH) or sulfinic acid (Cys-SO(2)H). Given the involvement of Pin1 in pathological processes related to neurodegenerative diseases and to cancer, these findings could have implications for the prevention or treatment of disease.


Assuntos
Domínio Catalítico , Cisteína/metabolismo , Peróxido de Hidrogênio/farmacologia , Peptidilprolil Isomerase/metabolismo , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Ditiotreitol/farmacologia , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Peptidilprolil Isomerase de Interação com NIMA , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Fatores de Tempo
20.
J Proteomics ; 118: 49-62, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25449829

RESUMO

Although multiple phosphorylation sites are often clustered in substrates, the mechanism of phosphorylation within clusters has not been systematically investigated. Intriguingly, in addition to acidic residues, protein kinase CK2 can use phosphoserine residues as consensus determinants suggesting that CK2 may act in concert with other kinases. We used a peptide array approach to outline optimal consensus sequences for hierarchical phosphorylation by CK2, both in the context of processive, multisite phosphorylation, and in concert with a priming proline-directed kinase. Results suggest that hierarchical phosphorylation involving CK2 requires precise positioning of either multiple phosphodeterminant residues or specific combinations of canonical determinants and phosphodeterminants, and can be as enzymatically favorable as canonical CK2 phosphorylation. Over 1600 human proteins contain at least one CK2 hierarchical consensus motif, and ~20% of these motifs contain at least one reported in vivo phosphorylation site. These motifs occur non-randomly in the human proteome, with significant enrichment in proteins controlling specific cellular processes. Taken together, our results provide strong in vitro evidence that hierarchical phosphorylation may contribute to the regulation of crucial biological processes. In addition, the results suggest a mechanism by which CK2, a constitutively active kinase, can be a regulatory participant in cellular processes. BIOLOGICAL SIGNIFICANCE: Phosphorylation is a crucial regulatory mechanism governing cellular signal transduction pathways, and despite the large number of identified sites to date, most mechanistic studies remain focused on individual phosphorylation sites. This study is the first to systematically determine specific consensus sequences for hierarchical phosphorylation events. The results indicate that individual phosphorylation sites should not be studied in isolation, and that larger, multisite phosphorylation motifs may have profound impact on cellular signaling. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Assuntos
Caseína Quinase II/química , Proteoma/química , Motivos de Aminoácidos , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Humanos , Fosforilação , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...