Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0227223, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966230

RESUMO

IMPORTANCE: Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.

3.
J Vis Exp ; (177)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34842240

RESUMO

Giant unilamellar vesicles (GUVs) are frequently used as models of biological membranes and thus are a great tool to study membrane-related cellular processes in vitro. In recent years, encapsulation within GUVs has proven to be a helpful approach for reconstitution experiments in cell biology and related fields. It better mimics confinement conditions inside living cells, as opposed to conventional biochemical reconstitution. Methods for encapsulation inside GUVs are often not easy to implement, and success rates can differ significantly from lab to lab. One technique that has proven to be successful for encapsulating more complex protein systems is called continuous droplet interface crossing encapsulation (cDICE). Here, a cDICE-based method is presented for rapidly encapsulating cytoskeletal proteins in GUVs with high encapsulation efficiency. In this method, first, lipid-monolayer droplets are generated by emulsifying a protein solution of interest in a lipid/oil mixture. After being added into a rotating 3D-printed chamber, these lipid-monolayered droplets then pass through a second lipid monolayer at a water/oil interface inside the chamber to form GUVs that contain the protein system. This method simplifies the overall procedure of encapsulation within GUVs and speeds up the process, and thus allows us to confine and observe the dynamic evolution of network assembly inside lipid bilayer vesicles. This platform is handy for studying the mechanics of cytoskeleton-membrane interactions in confinement.


Assuntos
Bicamadas Lipídicas , Lipossomas Unilamelares , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Lipossomas Unilamelares/metabolismo , Água
4.
Commun Biol ; 4(1): 1136, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584211

RESUMO

The proteins that make up the actin cytoskeleton can self-assemble into a variety of structures. In vitro experiments and coarse-grained simulations have shown that the actin crosslinking proteins α-actinin and fascin segregate into distinct domains in single actin bundles with a molecular size-dependent competition-based mechanism. Here, by encapsulating actin, α-actinin, and fascin in giant unilamellar vesicles (GUVs), we show that physical confinement can cause these proteins to form much more complex structures, including rings and asters at GUV peripheries and centers; the prevalence of different structures depends on GUV size. Strikingly, we found that α-actinin and fascin self-sort into separate domains in the aster structures with actin bundles whose apparent stiffness depends on the ratio of the relative concentrations of α-actinin and fascin. The observed boundary-imposed effect on protein sorting may be a general mechanism for creating emergent structures in biopolymer networks with multiple crosslinkers.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Proteínas de Transporte/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo
5.
Nat Commun ; 12(1): 2254, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859190

RESUMO

One of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes.


Assuntos
Actomiosina/metabolismo , Divisão Celular/fisiologia , Modelos Biológicos , Biologia Sintética/métodos , Lipossomas Unilamelares/metabolismo , Actomiosina/genética , Actomiosina/isolamento & purificação , Animais , Linhagem Celular , Drosophila , Humanos , Microscopia Intravital , Microscopia Confocal , Modelos Moleculares , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Annu Rev Biophys ; 50: 525-548, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33667121

RESUMO

Giant unilamellar vesicles (GUVs) have gained great popularity as mimicries for cellular membranes. As their sizes are comfortably above the optical resolution limit, and their lipid composition is easily controlled, they are ideal for quantitative light microscopic investigation of dynamic processes in and on membranes. However, reconstitution of functional proteins into the lumen or the GUV membrane itself has proven technically challenging. In recent years, a selection of techniques has been introduced that tremendously improve GUV-assay development and enable the precise investigation of protein-membrane interactions under well-controlled conditions. Moreover, due to these methodological advances, GUVs are considered important candidates as protocells in bottom-up synthetic biology. In this review, we discuss the state of the art of the most important vesicle production and protein encapsulation methods and highlight some key protein systems whose functional reconstitution has advanced the field.


Assuntos
Membrana Celular/química , Proteínas/química , Lipossomas Unilamelares/química , Membrana Celular/metabolismo , Humanos , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Proteínas/metabolismo , Biologia Sintética , Lipossomas Unilamelares/metabolismo
7.
Soft Matter ; 17(2): 319-330, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32914814

RESUMO

Reaction-diffusion systems encapsulated within giant unilamellar vesicles (GUVs) can lead to shape oscillations of these vesicles as recently observed for the bacterial Min protein system. This system contains two Min proteins, MinD and MinE, which periodically attach to and detach from the GUV membranes, with the detachment being driven by ATP hydrolysis. Here, we address these shape oscillations within the theoretical framework of curvature elasticity and show that they can be understood in terms of a spontaneous curvature that changes periodically with time. We focus on the simplest case provided by a attachment-detachment kinetics that is laterally uniform along the membrane. During each oscillation cycle, the vesicle shape is transformed from a symmetric dumbbell with two subcompartments of equal size to an asymmetric dumbbell with two subcompartments of different size, followed by the reverse, symmetry-restoring transformation. This sequence of shapes is first analyzed within the spontaneous curvature model which is then extended to the area-difference-elasticity model by decomposing the spontaneous curvature into a local and nonlocal component. For both symmetric and asymmetric dumbbells, the two subcompartments are connected by a narrow membrane neck with a circular waistline. The radius of this waistline undergoes periodic oscillations, the time dependence of which can be reasonably well fitted by a single Fourier mode with an average time period of 56 s.


Assuntos
Lipossomas Unilamelares , Difusão , Elasticidade , Membranas
8.
Angew Chem Int Ed Engl ; 59(48): 21372-21376, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-32735732

RESUMO

The geometry of reaction compartments can affect the local outcome of interface-restricted reactions. Giant unilamellar vesicles (GUVs) are commonly used to generate cell-sized, membrane-bound reaction compartments, which are, however, always spherical. Herein, we report the development of a microfluidic chip to trap and reversibly deform GUVs into cigar-like shapes. When trapping and elongating GUVs that contain the primary protein of the bacterial Z ring, FtsZ, we find that membrane-bound FtsZ filaments align preferentially with the short GUV axis. When GUVs are released from this confinement and membrane tension is relaxed, FtsZ reorganizes reversibly from filaments into dynamic rings that stabilize membrane protrusions; a process that allows reversible GUV deformation. We conclude that microfluidic traps are useful for manipulating both geometry and tension of GUVs, and for investigating how both affect the outcome of spatially-sensitive reactions inside them, such as that of protein self-organization.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Dispositivos Lab-On-A-Chip , Lipossomas Unilamelares/metabolismo , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Lipossomas Unilamelares/química
9.
Elife ; 92020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32657269

RESUMO

Focal adhesions (FA) are large macromolecular assemblies which help transmit mechanical forces and regulatory signals between the extracellular matrix and an interacting cell. Two key proteins talin and vinculin connecting integrin to actomyosin networks in the cell. Both proteins bind to F-actin and each other, providing a foundation for network formation within FAs. However, the underlying mechanisms regulating their engagement remain unclear. Here, we report on the results of in vitro reconstitution of talin-vinculin-actin assemblies using synthetic membrane systems. We find that neither talin nor vinculin alone recruit actin filaments to the membrane. In contrast, phosphoinositide-rich membranes recruit and activate talin, and the membrane-bound talin then activates vinculin. Together, the two proteins then link actin to the membrane. Encapsulation of these components within vesicles reorganized actin into higher-order networks. Notably, these observations were made in the absence of applied force, whereby we infer that the initial assembly stage of FAs is force independent. Our findings demonstrate that the local membrane composition plays a key role in controlling the stepwise recruitment, activation, and engagement of proteins within FAs.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Fosfatidilinositóis/metabolismo , Talina/metabolismo , Vinculina/metabolismo , Membranas Artificiais
10.
Small ; 16(27): e1906259, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32105403

RESUMO

Giant unilamellar phospholipid vesicles are attractive starting points for constructing minimal living cells from the bottom-up. Their membranes are compatible with many physiologically functional modules and act as selective barriers, while retaining a high morphological flexibility. However, their spherical shape renders them rather inappropriate to study phenomena that are based on distinct cell shape and polarity, such as cell division. Here, a microscale device based on 3D printed protein hydrogel is introduced to induce pH-stimulated reversible shape changes in trapped vesicles without compromising their free-standing membranes. Deformations of spheres to at least twice their aspect ratio, but also toward unusual quadratic or triangular shapes can be accomplished. Mechanical force induced by the cages to phase-separated membrane vesicles can lead to spontaneous shape deformations, from the recurrent formation of dumbbells with curved necks between domains to full budding of membrane domains as separate vesicles. Moreover, shape-tunable vesicles are particularly desirable when reconstituting geometry-sensitive protein networks, such as reaction-diffusion systems. In particular, vesicle shape changes allow to switch between different modes of self-organized protein oscillations within, and thus, to influence reaction networks directly by external mechanical cues.


Assuntos
Hidrogéis , Microtecnologia , Impressão Tridimensional , Lipossomas Unilamelares , Membrana Celular , Hidrogéis/química , Microtecnologia/métodos , Fosfolipídeos
11.
Angew Chem Int Ed Engl ; 57(50): 16286-16290, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30270475

RESUMO

The bacterial Min protein system was encapsulated in giant unilamellar vesicles (GUVs). Using confocal fluorescence microscopy, we identified several distinct modes of spatiotemporal patterns inside spherical GUVs. For osmotically deflated GUVs, the vesicle shape actively changed in concert with the Min oscillations. The periodic relocation of Min proteins from the vesicle lumen to the membrane and back is accompanied by drastic changes in the mechanical properties of the lipid bilayer. In particular, two types of oscillating membrane-shape changes are highlighted: 1) GUVs that repeatedly undergo fission into two connected compartments and fusion of these compartments back into a dumbbell shape and 2) GUVs that show periodic budding and subsequent merging of the buds with the mother vesicle, accompanied by an overall shape change of the vesicle reminiscent of a bouncing ball. These findings demonstrate how reaction-diffusion-based protein self-organization can directly yield visible mechanical effects on membrane compartments, even up to autonomous division, without the need for coupling to cytoskeletal elements.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Fenômenos Biomecânicos , Divisão Celular , Escherichia coli/citologia , Fluidez de Membrana , Fusão de Membrana , Lipossomas Unilamelares/metabolismo
12.
Lab Chip ; 18(5): 714-722, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29297916

RESUMO

We present an experimental system of networks of coupled non-linear chemical reactors, which we theoretically model within a reaction-diffusion framework. The networks consist of patterned arrays of diffusively coupled nanoliter-scale reactors containing the Belousov-Zhabotinsky (BZ) reaction. Microfluidic fabrication techniques are developed that provide the ability to vary the network topology and the reactor coupling strength and offer the freedom to choose whether an arbitrary reactor is inhibitory or excitatory coupled to its neighbor. This versatile experimental and theoretical framework can be used to create a wide variety of chemical networks. Here we design, construct and characterize chemical networks that achieve the complexity of central pattern generators (CPGs), which are found in the autonomic nervous system of a variety of organisms.


Assuntos
Sistema Nervoso Autônomo/citologia , Difusão , Técnicas Analíticas Microfluídicas , Redes Neurais de Computação , Engenharia Tecidual , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...