Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(2): 1413-1422, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34968037

RESUMO

Sustainably-produced hydrogen is currently intensively investigated as an energy carrier to replace fossil fuels. We here characterize an emerging electrochemical cell termed a desalination fuel cell (DFC) that can continuously generate electricity and desalinate water while using hydrogen and oxygen gases as inputs. We investigated two operational modes, a near-neutral pH operation with H2, O2, and feedwater inputs (H2|O2), and a pH-gradient mode with H2, O2, feedwater, acid, and base inputs (H2 + B|O2 + A). We show that our cell can desalinate water with 30 g/L of salt content to near-zero salt concentration, while generating an enormous amount of electricity of up to 8.6 kW h per m3 of treated water when operated in the pH-gradient mode and up to about 1 kW h per m3 for the near-neutral mode. We quantify the thermodynamic energy efficiency of our device in both operational modes, showing that significantly higher efficiency is achievable in the pH-gradient mode, with up to 95.6%. Further, we present results elucidating the key bottlenecks in the DFC process, showing that the cell current and voltage are limited in the near-neutral pH operation due to a lack of H+ to serve as a reactant, and further reinforce the deleterious effect of halide poisoning on the cathode Pt catalyst and cell open circuit voltage. Such findings demonstrate that new fuel cell catalyst materials, tailored for environments associated with water treatment, can unlock yet-improved performance.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Conservação de Recursos Energéticos , Eletrodos , Termodinâmica , Purificação da Água/métodos
2.
MethodsX ; 8: 101562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754824

RESUMO

Operando experiments attract increasing attention in lithium-ion batteries (LIBs) studies for their ability to capture non-equilibrium and fast-transient processes during electrochemical reactions. They provide valuable information and mechanisms that cannot be obtained from ex-situ methods. Designing a suitable and reliable electrochemical cell is the first crucial step for most operando studies. A poorly designed in-situ cell introduces artifacts into the data and might lead to misleading results. Even though many in-situ cells have been designed and applied for operando studies, designing a reliable cell is not trivial, especially for long-term cycling experiments. This study introduces the steps and details of a specific type of in-situ cell, i.e., modified coin cell, that can be applied reliably in various operando experiments. The reliability of the modified coin cell is demonstrated by comparing its electrochemical performance with the standard coin cell. The modified coin cell is then applied in various operando experiments, including operando transmission X-ray microscopy and operando synchrotron X-ray scattering.•Sealing the cell casing window with metal films maintains the overall electrochemical performance of electrodes.•Depending on the operando experiment, the type of the coin cell and the window shape must be selected carefully.

3.
Environ Sci Technol ; 55(1): 553-562, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33274912

RESUMO

A cost-effective and compact hydrogen storage system could advance fuel cell electric vehicles (FCEVs). Today's commercial FCEVs incorporate storage that is projected to be heavier, larger, and costlier than targets set by the U.S. Driving Research and Innovation for Vehicle efficiency and Energy sustainability Partnership (U.S. DRIVE). To inform research and development (R&D), we elicited 31 experts' assessments of expected future costs and capacities of storage systems. Experts suggested that systems would approach U.S. DRIVE's ultimate capacity targets but fall short of cost targets at a high production volume. The 2035 and 2050 median costs anticipated by experts were $13.5 and $10.53/kWhH2, gravimetric capacities of 5.2 and 5.6 wt %, and volumetric capacities of 0.93 and 1.33 kWhH2/L, respectively. To meet U.S. DRIVE's targets, experts recommended allocating the majority of government hydrogen storage R&D funding to materials development. Furthermore, we incorporated experts' cost assessments into a levelized cost of driving model. Given technical and fuel price uncertainty, FCEV costs ranged from $0.38 to $0.45/mile ($0.24-$0.28/km) in 2020, $0.30 to $0.33/mile ($0.19-$0.21/km) in 2035-2050, and $0.27 to $0.31/mile ($0.17-$0.19/km) in 2050. Depending on fuel, electricity, and battery prices, our findings suggest that FCEVs could compete with conventional and alternative fuel vehicles by 2035.


Assuntos
Condução de Veículo , Hidrogênio , Fontes de Energia Elétrica , Eletricidade , Veículos Automotores
4.
Adv Mater ; 32(46): e2003577, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058263

RESUMO

Increasing catalytic activity and durability of atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction (ORR) cathode in proton-exchange-membrane fuel cells remains a grand challenge. Here, a high-power and durable Co-N-C nanofiber catalyst synthesized through electrospinning cobalt-doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4 moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X-ray computed tomography verifies the well-distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm-2 in a practical H2 /air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM-free electrodes with improved performance and durability.

5.
MethodsX ; 7: 100822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195139

RESUMO

Electrochemical energy devices, such as batteries and fuel cells, contain active electrode components that have highly porous, multiphase microstructures for improved performance. Predictive electrochemical models of solid oxide fuel cell (SOFC) electrode performance based on measured microstructures have been limited to small length scales, a small number of simulations, and/or relatively homogeneous microstructures. To overcome the difficulty in modeling electrochemical activity of inhomogeneous microstructures at considerable length scales, we have developed a high-throughput simulation application that operates on high-performance computing platforms. The open-source application, named Electrochemical Reactions in MIcrostructural NEtworks (ERMINE), is implemented within the MOOSE computational framework, and solves species transport coupled to both three-phase boundary and two-phase boundary electrochemical reactions. As the core component, this application is further incorporated into a high-throughput computational workflow. The main advantages of the workflow include:•Straightforward image-based volumetric meshing that conforms to complex, multi-phased microstructural features•Computation of local electrochemical fields in morphology-resolved microstructures at considerable length scales•Implementation on high performance computing platforms, leading to fast, high-throughput computations.

6.
J Power Sources ; 4722020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34848919

RESUMO

Platinum group metal-free (PGM-free) catalysts are a low-cost alternative to expensive PGM catalysts for polymer electrolyte fuel cells. However, due to the low volumetric activity of PGM-free catalysts, the catalyst layer thickness of the PGM-free catalyst electrode is an order of magnitude higher than PGM based electrodes. The thick PGM-free electrodes suffer from increased transport resistance and poor water management, which ultimately limits the fuel cell performance. This manuscript presents the study of water management in the PGM-free electrodes to understand the transport limitations and improve fuel cell performance. In-operando neutron imaging is performed to estimate the water content in different components across the fuel cell thickness. Water saturation in thick PGM electrodes, with similar catalyst layer thickness to PGM-free electrodes, is lower than in the PGM-free electrodes irrespective of the operating conditions, due to high water retention by PGM-free catalysts. Improvements in fuel cell performance are accomplished by enhancing water removal from the flooded PGM-free electrode in three ways: (i) enhanced water removal with a novel microporous layer with hydrophilic pathways incorporated through hydrophilic additives, (ii) water removal through anode via novel GDL in the anode, and (iii) lower water saturation in PGM-free electrode structures with increased catalyst porosity.

7.
ACS Appl Mater Interfaces ; 12(2): 2216-2224, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31850728

RESUMO

Low cost and high-performing platinum group metal-free (PGM-free) cathodes have the potential to transform the economics of polymer electrolyte fuel cell (PEFC) commercialization. Significant advancements have been made recently in terms of PGM-free catalyst activity and stability. However, before PGM-free catalysts become viable in PEFCs, several technical challenges must be addressed including cathode's fabrication, ionomer integration, and transport losses. Here, we present an integrated optimization of cathode performance that was achieved by simultaneously optimizing the catalyst morphology and electrode structure for high power density. The chemically doped metal-organic framework derived Fe-N-C catalyst we used allows precise tuning of the particle size over a wide range, enabling this unique study. Our results demonstrate the careful interplay between the catalyst primary particle size and the polymer electrolyte ionomer integration. The primary particles must be sufficiently large to permit uniform ionomer thin films throughout the surrounding pores, but not so large as to impact intraparticle transport to the active sites. The content of ionomer must be carefully balanced between sufficient loading for the complete catalyst coverage and adequate proton conductivity, while not being excessive and inducing large oxygen transport losses and liquid water flooding. With the optimal 100 nm size catalyst and ionomer loading, we achieved a high power density of 410 mW/cm2 at a rated voltage and a peak power density of 610 mW/cm2 in an automotive-relevant operating condition.

8.
Proc Natl Acad Sci U S A ; 116(11): 4899-4904, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804192

RESUMO

Despite decades of development, proton exchange membrane fuel cells (PEMFCs) still lack wide market acceptance in vehicles. To understand the expected trajectories of PEMFC attributes that influence adoption, we conducted an expert elicitation assessment of the current and expected future cost and performance of automotive PEMFCs. We elicited 39 experts' assessments of PEMFC system cost, stack durability, and stack power density under a hypothetical, large-scale production scenario. Experts assessed the median 2017 automotive cost to be $75/kW, stack durability to be 4,000 hours, and stack power density to be 2.5 kW/L. However, experts ranged widely in their assessments. Experts' 2017 best cost assessments ranged from $40 to $500/kW, durability assessments ranged from 1,200 to 12,000 hours, and power density assessments ranged from 0.5 to 4 kW/L. Most respondents expected the 2020 cost to fall short of the 2020 target of the US Department of Energy (DOE). However, most respondents anticipated that the DOE's ultimate target of $30/kW would be met by 2050 and a power density of 3 kW/L would be achieved by 2035. Fifteen experts thought that the DOE's ultimate durability target of 8,000 hours would be met by 2050. In general, experts identified high Pt group metal loading as the most significant barrier to reducing cost. Recommended research and development (R&D) funding was allocated to "catalysts and electrodes," followed in decreasing amount by "fuel cell performance and durability," "membranes and electrolytes," and "testing and technical assessment." Our results could be used to inform public and private R&D decisions and technology roadmaps.

9.
Phys Chem Chem Phys ; 19(37): 25334-25345, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28890971

RESUMO

It is broadly understood that strontium-doped lanthanum manganate (LSM) cathodes for solid oxide fuel cells (SOFCs) have two pathways for the reduction of oxygen: a surface-mediated pathway culminating in oxygen incorporation into the electrolyte at the triple-phase boundary (TPB), and a bulk-mediated pathway involving oxygen transfer across the electrode-electrolyte interface. Patterned electrode and thin film experiments have shown that both pathways are active in LSM. Porous electrode geometries more commonly found in SOFCs have not been amenable for precise measurement of active electrode width because of the difficulty in precisely measuring the electrode geometry. This study quantitatively compares a reaction-diffusion model for the oxygen reduction reaction in LSM to the impedance spectrum of an experimental LSM porous electrode symmetric button cell on a yttria-stabilized zirconia (YSZ) electrolyte. The porous microstructure was characterized using computed tomography (nano-CT) and Bayesian model-based analysis (BMA) was used to estimate model parameters. BMA produced good fits to the data, with higher than expected values for the interfacial capacitance at the LSM-YSZ interface and vacancy diffusion activation energy; these results may indicate that the active width of the electrode is on a similar scale with that of the space-charge width at the LSM-YSZ interface. The analysis also showed that the active width and proportion of current moving through the bulk pathway is temperature dependent, in accordance with patterned electrode results.

10.
ACS Appl Mater Interfaces ; 9(22): 18748-18757, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28485578

RESUMO

While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 µm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 µm.

11.
ACS Appl Mater Interfaces ; 8(48): 32764-32777, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27805365

RESUMO

This article reports on the characterization of polymer electrolyte fuel cell (PEFC) cathodes featuring a platinum group metal-free (PGM-free) catalyst using nanoscale resolution X-ray computed tomography (nano-CT) and morphological analysis. PGM-free PEFC cathodes have gained significant interest in the past decade since they have the potential to dramatically reduce PEFC costs by eliminating the large platinum (Pt) raw material cost. However, several challenges remain before they are commercially viable. Since these catalysts have lower volumetric activity, the PGM-free cathodes are thicker and subject to increased gas and proton transport resistances that reduce the performance. To better understand the efficacy of the catalyst and improve electrode performance, a detailed understanding the correlation between electrode fabrication, morphology, and performance is crucial. In this work, the pore/solid structure and the ionomer distribution was resolved in three dimensions (3D) using nano-CT for three PGM-free electrodes of varying Nafion loading. The associated transport properties were evaluated from pore/particle-scale simulations within the nano-CT-imaged structure. These characterizations are then used to elucidate the microstructural origins of the dramatic changes in fuel cell performance with varying Nafion ionomer loading. We show that this is primarily a result of distinct changes in ionomer's spatial distribution. The significant impact of electrode morphology on performance highlights the importance of PGM-free electrode development in concert with efforts to improve catalyst activity and durability.

12.
Langmuir ; 31(36): 9853-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26299282

RESUMO

Significant reductions in expensive platinum catalyst loading for the oxygen reduction reaction are needed for commercially viable fuel cell electric vehicles as well as other important applications. In reducing loading, a resistance at the Pt surface in the presence of thin perfluorosulfonic acid (PFSA) electrolyte film, on the order of 10 nm thick, becomes a significant barrier to adequate performance. However, the resistance mechanism is unresolved and could be due to gas dissolution kinetics, increased diffusion resistance in thin films, or electrolyte anion interactions. A common hypothesis for the origin of the resistance is a highly reduced oxygen permeability in the thin polymer electrolyte films that coat the catalyst relative to bulk permeability that is caused by nanoscale confinement effects. Unfortunately, the prior work has not separated the thin-film gas transport resistance from that associated with PFSA interactions with a polarized catalyst surface. Here, we present the first characterization of the thin-film O2 transport resistance in the absence of a polarized catalyst, using a nanoporous substrate that geometrically mimics the active catalyst particles. Through a parametric study of varying PFSA film thickness, as thin as 50 nm, we observe no enhanced gas transport resistance in thin films as a result of either interfacial effects or structural changes in the PFSA. Our results suggest that other effects, such as anion poisoning at the Pt catalyst, could be the source of the additional resistance observed at low Pt loading.

13.
Adv Sci (Weinh) ; 2(5): 1500069, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27980945

RESUMO

Three-dimensionally ordered macroporous (3DOM) hydrogels prepared by colloidal crystals templating display highly reversible shape memory properties, as confirmed by indirect electron microscopy imaging of their inverse replicas and direct nanoscale resolution X-ray microscopy imaging of the hydrated hydrogels. Modifications of functional groups in the 3DOM hydrogels result in various materials with programmed properties for a wide range of applications.

14.
Anal Chem ; 83(24): 9492-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22040011

RESUMO

We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...