Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Neurotrauma Rep ; 5(1): 61-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288298

RESUMO

Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.

2.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014315

RESUMO

Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.

3.
Nature ; 619(7969): 385-393, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37407816

RESUMO

The basic helix-loop-helix (bHLH) family of transcription factors recognizes DNA motifs known as E-boxes (CANNTG) and includes 108 members1. Here we investigate how chromatinized E-boxes are engaged by two structurally diverse bHLH proteins: the proto-oncogene MYC-MAX and the circadian transcription factor CLOCK-BMAL1 (refs. 2,3). Both transcription factors bind to E-boxes preferentially near the nucleosomal entry-exit sites. Structural studies with engineered or native nucleosome sequences show that MYC-MAX or CLOCK-BMAL1 triggers the release of DNA from histones to gain access. Atop the H2A-H2B acidic patch4, the CLOCK-BMAL1 Per-Arnt-Sim (PAS) dimerization domains engage the histone octamer disc. Binding of tandem E-boxes5-7 at endogenous DNA sequences occurs through direct interactions between two CLOCK-BMAL1 protomers and histones and is important for circadian cycling. At internal E-boxes, the MYC-MAX leucine zipper can also interact with histones H2B and H3, and its binding is indirectly enhanced by OCT4 elsewhere on the nucleosome. The nucleosomal E-box position and the type of bHLH dimerization domain jointly determine the histone contact, the affinity and the degree of competition and cooperativity with other nucleosome-bound factors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , DNA , Histonas , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Sequências Hélice-Alça-Hélice/genética , Histonas/química , Histonas/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação Alostérica , Zíper de Leucina , Fator 3 de Transcrição de Octâmero/metabolismo , Multimerização Proteica
4.
Stat Med ; 42(18): 3236-3258, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265194

RESUMO

Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).


Assuntos
Ritmo Circadiano , Projetos de Pesquisa , Humanos , Animais , Camundongos , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Transcriptoma , Tamanho da Amostra
5.
PLoS One ; 18(3): e0283463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36961772

RESUMO

The molecular circadian clock is regulated by a transcriptional translational feedback loop. However, the post-translational control mechanisms are less understood. The NRON complex is a large ribonucleoprotein complex, consisting of a lncRNA and several proteins. Components of the complex play a distinct role in regulating protein phosphorylation, synthesis, stability, and translocation in cellular processes. This includes the NFAT and the circadian clock pathway. PSMD11 is a component of the NRON complex and a lid component of the 26S proteasome. Among the PSMD family members, PSMD11 has a more specific role in circadian clock function. Here, we used cell and biochemical approaches and characterized the role of PSMD11 in regulating the stability and nuclear translocation of circadian clock proteins. We used size exclusion chromatography to enrich the NRON complex in the cytosolic and nuclear fractions. More specifically, PSMD11 knockdown affected the abundance of PER2 and CRY2 proteins and the nuclear translocation of CRY1. This changed the relative abundance of CRY1 and CRY2 in the nucleus. Thus, this work defines the role of PSMD11 in the NRON complex regulating the nuclear translocation of circadian repressors, thereby enabling cellular circadian oscillations.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Criptocromos/genética , Criptocromos/metabolismo , Proteínas CLOCK/genética , Núcleo Celular/metabolismo , Fatores de Transcrição ARNTL/metabolismo
6.
Cell Rep ; 42(1): 111982, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640301

RESUMO

Cellular circadian clocks direct a daily transcriptional program that supports homeostasis and resilience. Emerging evidence has demonstrated age-associated changes in circadian functions. To define age-dependent changes at the systems level, we profile the circadian transcriptome in the hypothalamus, lung, heart, kidney, skeletal muscle, and adrenal gland in three age groups. We find age-dependent and tissue-specific clock output changes. Aging reduces the number of rhythmically expressed genes (REGs), indicative of weakened circadian control. REGs are enriched for the hallmarks of aging, adding another dimension to our understanding of aging. Analyzing differential gene expression within a tissue at four different times of day identifies distinct clusters of differentially expressed genes (DEGs). Increased variability of gene expression across the day is a common feature of aged tissues. This analysis extends the landscape for understanding aging and highlights the impact of aging on circadian clock function and temporal changes in gene expression.


Assuntos
Relógios Circadianos , Transcriptoma , Masculino , Animais , Camundongos , Transcriptoma/genética , Ritmo Circadiano/genética , Relógios Circadianos/genética , Hipotálamo , Envelhecimento/genética , Envelhecimento/metabolismo
7.
Sleep ; 46(2)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36462188

RESUMO

STUDY OBJECTIVES: Genetics impacts sleep, yet, the molecular mechanisms underlying sleep regulation remain elusive. In this study, we built machine learning models to predict sleep genes based on their similarity to genes that are known to regulate sleep. METHODS: We trained a prediction model on thousands of published datasets, representing circadian, immune, sleep deprivation, and many other processes, using a manually curated list of 109 sleep genes. RESULTS: Our predictions fit with prior knowledge of sleep regulation and identified key genes and pathways to pursue in follow-up studies. As an example, we focused on the NF-κB pathway and showed that chronic activation of NF-κB in a genetic mouse model impacted the sleep-wake patterns. CONCLUSION: Our study highlights the power of machine learning in integrating prior knowledge and genome-wide data to study genetic regulation of complex behaviors such as sleep.


Assuntos
NF-kappa B , Sono , Animais , Camundongos , Ritmo Circadiano/genética , Regulação da Expressão Gênica , NF-kappa B/genética , Sono/genética , Sono/fisiologia , Privação do Sono/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 322(1): L84-L101, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34850650

RESUMO

An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.


Assuntos
Ritmo Circadiano/fisiologia , Saúde , Pneumopatias/fisiopatologia , Pulmão/irrigação sanguínea , Animais , Restrição Calórica , Relógios Circadianos , Humanos
10.
Compr Physiol ; 12(1): 2769-2798, 2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964116

RESUMO

Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Sistema Endócrino , Homeostase , Humanos , Mamíferos
11.
PLoS Genet ; 17(11): e1009933, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807912

RESUMO

In mammals, the circadian clock coordinates cell physiological processes including inflammation. Recent studies suggested a crosstalk between these two pathways. However, the mechanism of how inflammation affects the clock is not well understood. Here, we investigated the role of the proinflammatory transcription factor NF-κB in regulating clock function. Using a combination of genetic and pharmacological approaches, we show that perturbation of the canonical NF-κB subunit RELA in the human U2OS cellular model altered core clock gene expression. While RELA activation shortened period length and dampened amplitude, its inhibition lengthened period length and caused amplitude phenotypes. NF-κB perturbation also altered circadian rhythms in the master suprachiasmatic nucleus (SCN) clock and locomotor activity behavior under different light/dark conditions. We show that RELA, like the clock repressor CRY1, repressed the transcriptional activity of BMAL1/CLOCK at the circadian E-box cis-element. Biochemical and biophysical analysis showed that RELA binds to the transactivation domain of BMAL1. These data support a model in which NF-kB competes with CRY1 and coactivator CBP/p300 for BMAL1 binding to affect circadian transcription. This is further supported by chromatin immunoprecipitation analysis showing that binding of RELA, BMAL1 and CLOCK converges on the E-boxes of clock genes. Taken together, these data support a significant role for NF-κB in directly regulating the circadian clock and highlight mutual regulation between the circadian and inflammatory pathways.


Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Inflamação/genética , Fator de Transcrição RelA/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Inflamação/patologia , NF-kappa B/genética , Núcleo Supraquiasmático/metabolismo
12.
SAGE Open Med Case Rep ; 9: 2050313X211025145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34221404

RESUMO

Non-steroidal anti-inflammatory drugs are not only potent analgesics and antipyretics but also nephrotoxins, and may cause electrolyte disarray. In addition to the commonly expected effects, including hyperkalemia, hyponatremia, acute renal injury, renal cortical necrosis, and volume retention, glomerular disease with or without nephrotic syndrome or nephritis can occur as well including after years of seemingly safe administration. Minimal change disease, secondary membranous glomerulonephritis, and acute interstitial nephritis are all reported glomerular lesions seen with non-steroidal anti-inflammatory use. We report a patient who used non-steroidal anti-inflammatory drugs for years without diabetes, chronic kidney disease, or proteinuria; he then developed severe nephrotic range proteinuria with 7 g of daily urinary protein excretion. Renal biopsy showed minimal change nephropathy, a likely secondary membranous glomerulonephritis, and acute interstitial nephritis present simultaneously in one biopsy. Cessation of non-steroidal anti-inflammatory drug use along with steroid treatment resulted in a moderate improvement in renal function, though residual impairment remained. Urine heavy metal screen returned with elevated levels of urine copper, but with normal ceruloplasmin level. Workup suggested that the elevated copper levels were due to cirrhosis from non-alcoholic fatty liver disease. The membranous glomerulonephritis is possibly linked to non-steroidal anti-inflammatory drug exposure, and possibly to heavy metal exposure, and is clinically and pathologically much less likely to be a primary membranous glomerulonephritis with negative serological markers.

13.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34117739

RESUMO

Circadian rhythmicity in transcriptomic profiles has been shown in many physiological processes, and the disruption of circadian patterns has been found to associate with several diseases. In this paper, we developed a series of likelihood-based methods to detect (i) circadian rhythmicity (denoted as LR_rhythmicity) and (ii) differential circadian patterns comparing two experimental conditions (denoted as LR_diff). In terms of circadian rhythmicity detection, we demonstrated that our proposed LR_rhythmicity could better control the type I error rate compared to existing methods under a wide variety of simulation settings. In terms of differential circadian patterns, we developed methods in detecting differential amplitude, differential phase, differential basal level and differential fit, which also successfully controlled the type I error rate. In addition, we demonstrated that the proposed LR_diff could achieve higher statistical power in detecting differential fit, compared to existing methods. The superior performance of LR_rhythmicity and LR_diff was demonstrated in four real data applications, including a brain aging data (gene expression microarray data of human postmortem brain), a time-restricted feeding data (RNA sequencing data of human skeletal muscles) and a scRNAseq data (single cell RNA sequencing data of mouse suprachiasmatic nucleus). An R package for our methods is publicly available on GitHub https://github.com/diffCircadian/diffCircadian.


Assuntos
Ritmo Circadiano/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Funções Verossimilhança , Software , Transcriptoma , Fatores Etários , Algoritmos , Animais , Biomarcadores , Encéfalo/fisiologia , Humanos , Camundongos , Reprodutibilidade dos Testes
14.
Artigo em Inglês | MEDLINE | ID: mdl-35156088

RESUMO

The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-h periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that cause further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention.

15.
Exp Gerontol ; 142: 111123, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33191210

RESUMO

Aging is the primary risk factor for functional decline; thus, understanding and preventing disability among older adults has emerged as an important public health challenge of the 21st century. The science of gerontology - or geroscience - has the practical purpose of "adding life to the years." The overall goal of geroscience is to increase healthspan, which refers to extending the portion of the lifespan in which the individual experiences enjoyment, satisfaction, and wellness. An important facet of this goal is preserving mobility, defined as the ability to move independently. Despite this clear purpose, this has proven to be a challenging endeavor as mobility and function in later life are influenced by a complex interaction of factors across multiple domains. Moreover, findings over the past decade have highlighted the complexity of walking and how targeting multiple systems, including the brain and sensory organs, as well as the environment in which a person lives, can have a dramatic effect on an older person's mobility and function. For these reasons, behavioral interventions that incorporate complex walking tasks and other activities of daily living appear to be especially helpful for improving mobility function. Other pharmaceutical interventions, such as oxytocin, and complementary and alternative interventions, such as massage therapy, may enhance physical function both through direct effects on biological mechanisms related to mobility, as well as indirectly through modulation of cognitive and socioemotional processes. Thus, the purpose of the present review is to describe evolving interventional approaches to enhance mobility and maintain healthspan in the growing population of older adults in the United States and countries throughout the world. Such interventions are likely to be greatly assisted by technological advances and the widespread adoption of virtual communications during and after the COVID-19 era.


Assuntos
COVID-19/epidemiologia , Geriatria , Desempenho Físico Funcional , SARS-CoV-2 , Idoso , Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Cognição , Terapias Complementares , Humanos , Pessoa de Meia-Idade , Limitação da Mobilidade , Transtornos do Sono-Vigília/complicações
16.
Nutrients ; 12(10)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027883

RESUMO

Kava beverages are typically prepared from the root of Piper methysticum. They have been consumed among Pacific Islanders for centuries. Kava extract preparations were once used as herbal drugs to treat anxiety in Europe. Kava is also marketed as a dietary supplement in the U.S. and is gaining popularity as a recreational drink in Western countries. Recent studies suggest that kava and its key phytochemicals have anti-inflammatory and anticancer effects, in addition to the well-documented neurological benefits. While its beneficial effects are widely recognized, rare hepatotoxicity had been associated with use of certain kava preparations, but there are no validations nor consistent mechanisms. Major challenges lie in the diversity of kava products and the lack of standardization, which has produced an unmet need for quality initiatives. This review aims to provide the scientific community and consumers, as well as regulatory agencies, with a broad overview on kava use and its related research. We first provide a historical background for its different uses and then discuss the current state of the research, including its chemical composition, possible mechanisms of action, and its therapeutic potential in treating inflammatory and neurological conditions, as well as cancer. We then discuss the challenges associated with kava use and research, focusing on the need for the detailed characterization of kava components and associated risks such as its reported hepatotoxicity. Lastly, given its growing popularity in clinical and recreational use, we emphasize the urgent need for quality control and quality assurance of kava products, pharmacokinetics, absorption, distribution, metabolism, excretion, and foundational pharmacology. These are essential in order to inform research into the molecular targets, cellular mechanisms, and creative use of early stage human clinical trials for designer kava modalities to inform and guide the design and execution of future randomized placebo controlled trials to maximize kava's clinical efficacy and to minimize its risks.


Assuntos
Kava/química , Valor Nutritivo , Compostos Fitoquímicos/administração & dosagem , Extratos Vegetais/química , Anti-Inflamatórios , Antineoplásicos Fitogênicos , Ansiedade/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Suplementos Nutricionais , Humanos , Kava/efeitos adversos , Doenças do Sistema Nervoso/tratamento farmacológico , Compostos Fitoquímicos/efeitos adversos , Compostos Fitoquímicos/farmacocinética , Fitoterapia , Controle de Qualidade
17.
J Mol Biol ; 432(12): 3547-3564, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32061938

RESUMO

The mammalian circadian clock regulates a wide variety of physiological and behavioral processes. In turn, its disruption is associated with sleep deficiency, metabolic syndrome, neurological and psychiatric disorders, and cancer. At the turn of the century, the circadian clock was determined to be regulated by a transcriptional negative feedback mechanism composed of a dozen core clock genes. More recently, large-scale genomic studies have expanded the clock into a complex network composed of thousands of gene outputs and inputs. A major task of circadian research is to utilize systems biological approaches to uncover the governing principles underlying cellular oscillatory behavior and advance understanding of biological functions at the genomic level with spatiotemporal resolution. This review focuses on the genes and pathways that provide inputs to the circadian clock. Several emerging examples include AMP-activated protein kinase AMPK, nutrient/energy sensor mTOR, NAD+-dependent deacetylase SIRT1, hypoxia-inducible factor HIF1α, oxidative stress-inducible factor NRF2, and the proinflammatory factor NF-κB. Among others that continue to be revealed, these input pathways reflect the extensive interplay between the clock and cell physiology through the regulation of core clock genes and proteins. While the scope of this crosstalk is well-recognized, precise molecular links are scarce, and the underlying regulatory mechanisms are not well understood. Future research must leverage genetic and genomic tools and technologies, network analysis, and computational modeling to characterize additional modifiers and input pathways. This systems-based framework promises to advance understanding of the circadian timekeeping system and may enable the enhancement of circadian functions through related input pathways.


Assuntos
Fenômenos Fisiológicos Celulares/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Proteínas Quinases/genética , Sirtuína 1/genética , Serina-Treonina Quinases TOR/genética
18.
Brief Bioinform ; 21(4): 1182-1195, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31190075

RESUMO

Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.


Assuntos
Medicina de Precisão , Sepse/diagnóstico , Sepse/terapia , Humanos , Prognóstico , Fatores de Risco , Sepse/patologia
19.
Neuron ; 104(4): 724-735.e6, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31522764

RESUMO

The integrated stress response (ISR) is activated in response to diverse stress stimuli to maintain homeostasis in neurons. Central to this process is the phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Here, we report a critical role for ISR in regulating the mammalian circadian clock. The eIF2α kinase GCN2 rhythmically phosphorylates eIF2α in the suprachiasmatic circadian clock. Increased eIF2α phosphorylation shortens the circadian period in both fibroblasts and mice, whereas reduced eIF2α phosphorylation lengthens the circadian period and impairs circadian rhythmicity in animals. Mechanistically, phosphorylation of eIF2α promotes mRNA translation of Atf4. ATF4 binding motifs are identified in multiple clock genes, including Per2, Per3, Cry1, Cry2, and Clock. ATF4 binds to the TTGCAGCA motif in the Per2 promoter and activates its transcription. Together, these results demonstrate a significant role for ISR in circadian physiology and provide a potential link between dysregulated ISR and circadian dysfunction in brain diseases.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica/fisiologia , Homeostase/fisiologia , Proteínas Circadianas Period/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Fisiológico/fisiologia
20.
Sci Rep ; 9(1): 11883, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31417156

RESUMO

Post-translational regulation plays a central role in the circadian clock mechanism. However, nucleocytoplasmic translocation of core clock proteins, a key step in circadian timekeeping, is not fully understood. Earlier we found that the NRON scaffolding complex regulates nuclear translocation of NFAT and its signaling. Here, we show that components of the NRON complex also regulate the circadian clock. In peripheral cell clock models, genetic perturbation of the NRON complex affects PER and CRY protein nuclear translocation, dampens amplitude, and alters period length. Further, we show small molecules targeting the NFAT pathway alter nuclear translocation of PER and CRY proteins and impact circadian rhythms in peripheral cells and tissue explants of the master clock in the suprachiasmatic nucleus. Taken together, these studies highlight a key role for the NRON complex in regulating PER/CRY subcellular localization and circadian timekeeping.


Assuntos
Núcleo Celular/metabolismo , Relógios Circadianos/fisiologia , Criptocromos/metabolismo , Proteínas Circadianas Period/metabolismo , RNA Longo não Codificante/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Sinalização do Cálcio , Linhagem Celular , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Modelos Biológicos , Transporte Proteico , Interferência de RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...