Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 359: 142259, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723692

RESUMO

6-Methylquinoline (6-MQ) is identified as a high-concentration organic compound pervasive in shale gas wastewater (SGW) and poses a significant risk of environmental pollution. In response, this study aimed to address these challenges by introducing an innovative electrochemical membrane constructed with multi-walled carbon nanotubes (CNTs) for the removal of 6-MQ. The investigation systematically explored the impact of voltage, initial pollutant concentration, and salinity on the performance of the electrochemical CNTs filter. It was found a positive correlation between removal efficiency and increasing voltage and salinity levels. Conversely, as the initial concentration of pollutants increased, the efficiency showed a diminishing trend. The electrochemical CNTs filter exhibited remarkable efficacy in both adsorption removal and electrochemical oxidation of 6-MQ. Notably, the CNTs membrane exhibited robust adsorption capabilities, evidenced by the sustained adsorption of 6-MQ for over 33 h. Furthermore, applying an electrochemical oxidation voltage of 3 V consistently maintained a removal rate exceeding 34.0% due to both direct and indirect oxidation, underscoring the sustained efficacy of the electrochemical membranes. Besides, real wastewater experiments, while displaying a reduction in removal efficiency compared to synthetic wastewater experiments, emphasized the substantial potential of the electrochemical CNTs filter for practical applications. This study underscores the significant promise of electrochemical membranes in addressing low molecular weight contaminants in SGW, contributing valuable insights for advancing SGW treatment strategies.

2.
Environ Technol ; : 1-12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780498

RESUMO

Most of the materials studied as catalysts in the electro-Fenton system are variants of iron oxide or iron hydroxide. However, iron-based catalysts often exhibit weak catalytic capabilities under neutral and alkaline conditions. In this work, we synthesized three cobalt based bimetallic oxides, Co2CuOx, Co2AlOx, and Co2NiOx, using hydrothermal method and evaluated them as catalysts for the heterogeneous electro-Fenton system to remove 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) and Methylisothiazolinone [2-methyl-4-isothiazolin-3-one] (MIT). Co2NiOx has the highest catalytic degradation activity for HEDP, and Co2CuOx has the best catalytic degradation effect for MIT. Based on characterization results of the catalysts, the reasons for the differences in the pollutant removal efficiency were analysed, and the optimal pH for the three cobalt based oxides to remove HEDP and MIT was investigated. The results showed that the optimal pH values of the three cobalt based bimetallic oxides are not only influenced by the second metal type, but also by the properties of pollutants. Therefore, suitable cobalt based catalysts can be selected based on the different properties of pollutants, or the composition of cobalt based catalysts can be adjusted to meet the different pH requirements of target wastewater. The three cobalt based bimetallic oxides exhibited good degradation of HEDP and MIT under neutral conditions, which to some extent solved the problem of narrow pH range in the practical application of the electro-Fenton process.

3.
J Hazard Mater ; 469: 133873, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38428298

RESUMO

In the last decade, rapid shale gas exploration in upper Yangtze River ecological zone in China has led to increasing concerns about the environmental impact of shale gas wastewater (SGW). However, our understanding of the types of potential hazardous substances of SGW remains limited. In this study, eight SGW samples from three shale gas regions in upper Yangtze River: the Sichuan Basin, the Guizhou Plateau, and the Three Gorges Area were collected, and their general water quality, trace metals, and organic compounds were comprehensively analyzed. Our in-depth analysis detected 55 kinds of trace heavy metals, with 24 exceeding detection limits. Most of them were of the concentration below 100 µg/L. Concentrations of primary pollutants, including Cd, Cr, As, Pb, and Ni, remained below Integrated Wastewater Discharge Standard (GB 8978-1996), indicating minimal environmental risk. The organic analysis identified 45 to 104 kinds of volatile and semi-volatile organic compounds in SGW samples from different regions. SGW samples from the Sichuan Basin exhibited a balanced proportion of aliphatic and aromatic compounds, with oxygen and nitrogen-substituted heteroatomic compounds prevailing, while SGW samples from the Guizhou Plateau and the Three Gorges Area were dominated by aromatic compounds, particularly hydrocarbons. Several organic substances exhibited high response strengths across multiple SGW samples, including isoquinoline, dibenzylamine, 2,4-di-tert-butylphenol, 1,2,3,4-tetrahydro-naphthalene, and 1,2,3,4-tetrahydro-6-methyl-naphthalene. The Globally Harmonized System (GHS) of Classification and Labelling of Chemicals classified most high-response organics as high acute and chronic aquatic hazards. Our findings indicate that high salinity and a variety of high-risk organic pollutants, rather than heavy metals, are the primary pollutants in SGW, underscoring the urgency of safety management of SGW.

4.
Bioresour Technol ; 389: 129812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776911

RESUMO

In practical engineering, nitrogen removal at low temperatures or low C/N ratios is difficult. Although strains can remove nitrogen well at low temperatures, there is no research on the performance and deep mechanism of strains under low C/N ratio stress. In this study, Pseudomonas sp. LW60 with superior nitrogen removal efficiency under low C/N ratio stress was isolated at 4 °C. With a C/N ratio of 2-10, the NH4+-N removal efficiency was 40.02 %-100 % at 4 °C. Furthermore, the resistance mechanism of Pseudomonas sp. LW60 to low C/N ratio stress was deeply investigated by multi-omics. The results of transcriptome, proteome, and metabolome revealed that the resistance of strain LW60 to low C/N ratio stress was attributed to enhanced central carbon metabolism, amino acid metabolism, and ABC transporters, rather than nitrogen removal pathways. This study isolated a strain with low C/N ratio tolerance and deeply explored its tolerance mechanism by multi-omics.

5.
J Hazard Mater ; 459: 132206, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543018

RESUMO

Despite the significant attention given to microplastics in urban areas, our understanding of microplastics in rural drinking water systems is still limited. To address this knowledge gap, we investigated the presence and pathways of microplastics in rural drinking water system, including reservoir, water treatment plant (WTP), and tap water of end-users. The results showed that the treatment processes in the WTP, including coagulation-sedimentation, sand-granular active carbon filtration, and ultrafiltration, completely removed microplastics from the influent. However, the microplastic abundance increased during pipe transport from WTP to residents' homes, resulting in the presence of 1.4 particles/L of microplastics in tap water. This microplastic increase was also observed during the transportation from the reservoir to the WTP, suggesting that the plastic pipe network is a key source of microplastics in the drinking water system. The main types of polymers were PET, PP, and PE, and plastic breakdown, atmospheric deposition, and surface runoff were considered as their potential sources. Furthermore, this study estimated that rural residents could ingest up to 1034 microplastics annually by drinking 2 L of tap water every day. Overall, these findings provide essential data and preliminary insights into the fate of microplastics in rural drinking water systems.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China
6.
Bioresour Technol ; 385: 129465, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37429553

RESUMO

Although many studies report the resistance of heterotrophic nitrification-aerobic denitrification (HN-AD) strains to single environmental stress, there is no research on its resistance to dual stresses of low temperature and high alkalinity. A novel bacterium Pseudomonas reactants WL20-3 isolated in this study showed removal efficiencies of 100%, 100%, and 97.76% for ammonium, nitrate, and nitrite, respectively, at 4 °C and pH 11.0. Transcriptome analysis revealed that the resistance of strain WL20-3 to dual stresses was attributed not only to the regulation of genes in the nitrogen metabolic pathway, but also to genes in other pathways such as the ribosome, oxidative phosphorylation, amino acid metabolism, and ABC transporters. Additionally, WL20-3 removed 83.98% of ammonium from actual wastewater at 4 °C and pH 11.0. This study isolated a novel strain WL20-3 with superior nitrogen removal under dual stresses and provided a molecular understanding of its tolerance mechanism to low temperature and high alkalinity.


Assuntos
Compostos de Amônio , Desnitrificação , Nitrogênio/metabolismo , Temperatura , Aerobiose , Nitrificação , Pseudomonas/metabolismo , Nitritos/química , Compostos de Amônio/metabolismo , Processos Heterotróficos
7.
Bioresour Technol ; 385: 129389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369315

RESUMO

Nitrate can be well removed by bacteria at 25-30 °C. However, nitrate removal almost ceases at temperatures lower than 5 °C. In this study, a novel hypothermic strain, Pseudomonas reactans WL20-3 exhibited an excellent aerobic nitrate removal ability at 4 °C. It had high capability for the removal of nitrate, total dissolved nitrogen (TDN), and dissolved organic carbon (DOC) at 4 °C, achieving removal efficiencies of 100%, 87.91%, and 97.48%, respectively. The transcriptome analysis revealed all genes involved in the nitrate removal pathway were significantly up-regulated. Additionally, the up-regulation of ABC transporter genes and down-regulation of respiratory chain genes cooperated with the nitrate metabolism pathway to resist low-temperature stress. In actual sewage, inoculated with WL20-3, the nitrate removal efficiency was found to be 70.70%. Overall, these findings demonstrated the impressive capacity of the novel strain WL20-3 to remove nitrate and provided novel insights into the synergistic resistance mechanism of WL20-3 at low temperature.


Assuntos
Nitratos , Esgotos , Nitratos/metabolismo , Desnitrificação , Pseudomonas/metabolismo , Aerobiose , Nitrogênio/metabolismo , Nitrificação , Nitritos/metabolismo
8.
ACS Appl Mater Interfaces ; 15(15): 19504-19513, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37022125

RESUMO

Membrane distillation (MD) is a promising technique for water reclamation from hypersaline wastewater. However, fouling and wetting of the hydrophobic membranes are two prominent challenges for the widespread application of MD. Herein, we developed an antiwetting and antifouling Janus membrane comprising a hydrogel-like polyvinyl alcohol/tannic acid (PVA/TA) top layer and a hydrophobic polytetrafluoroethylene (PTFE) membrane substrate via a facile and benign strategy combining mussel-amine co-deposition with the shrinkage-rehydration process. Interestingly, the vapor flux of the Janus membrane was not compromised, though a microscale PVA/TA layer was introduced, possibly due to the high water uptake and reduced water evaporation enthalpy of the hydrogel-like structure. Moreover, the PVA/TA-PTFE Janus membrane sustained stable MD performance while treating a challenging saline feed containing surfactants and mineral oils. The robust wetting resistance arises from the synergistic effects of the elevated liquid entry pressure (1.01 ± 0.02 MPa) of the membrane and the retardation of surfactant transport to the substrate PTFE layer. Meanwhile, the hydrogel-like PVA/TA layer hinders oil fouling due to its strongly hydrated state. Furthermore, the PVA/TA-PTFE membrane exhibited improved performance in purifying shale gas wastewater and landfill leachate. This study provides new insights into the facile design and fabrication of promising MD membranes for hypersaline wastewater treatment.

9.
J Environ Manage ; 331: 117238, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681031

RESUMO

The production of shale gas in China has repercussions for the global energy landscape and carbon neutrality. However, limited and threatened water resources may hinder the expansion of shale-derived natural gas, one of China's most promising development prospects. Coupling historical trends with policy guidance, we project that baseline water stress will intensify in two-thirds of China's provinces in the next decade. By 2035, annual water use for shale gas hydraulic fracturing activities is likely to increase to 16-35 million m3, with 13.8-23.7 million m3 of wastewater produced annually to extract 38-48 billion m3 of gas from ∼4800 shale gas wells. Analysis suggests that this projection is based on previously underestimated geological constraints (e.g., deep continental facies) in shale gas development in China. Nevertheless, forecasts suggest that the water footprint of shale development will become impossible to ignore, particularly in drought-stricken areas, indicating the potential risk of competition for water among shale development, domestic use, food production, and ecological protection. Meanwhile, the annual wastewater management market will increase to $0.2 billion by 2035. Our study suggests a critical need to direct attention to the (shale) energy-water nexus and develop multi-pronged policies to facilitate China's transition to carbon neutrality.


Assuntos
Gás Natural , Águas Residuárias , Carbono , Campos de Petróleo e Gás , China , Minerais
10.
Sci Total Environ ; 868: 161632, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657675

RESUMO

Water resources of many rural areas are usually lakes or reservoirs, which can be easily affected by run-off, non-point source pollution and are often of poorer quality compared with urban water sources. Drinking water supply in remote rural areas usually suffers from various challenges, such as the high cost of construction and maintenance of centralized drinking water treatment plants and pipe networks, due to the dispersed nature of villages, which are often located in varied and complex topographies. In this study, a combined process comprising biological aerated filter (BAF) combined with ultrafiltration was developed to treat polluted reservoir water. Organic matter indexes, turbidity, and chroma were used as indicators for the evaluation of the system performance. In a long-term experiment lasting 260 days, the combined process was tested under different values of critical operational parameters, including filler types and empty bed contact time (EBCT). Furthermore, the microbial communities in different BAF reactors were carefully evaluated at different times, finding that microorganisms with specific functions were enriched in the various BAF reactors. The combined process reached 85.5 % removal rate of DOC with an EBCT of 45 min and using granule active carbon (GAC) as filler. Most of the effluents of BAF reactors met the requirements for drinking water in China. The combined system showed practical potential for polluted water treatment in some rural areas.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ultrafiltração , Abastecimento de Água , Carvão Vegetal , Poluentes Químicos da Água/análise , Filtração
11.
J Hazard Mater ; 447: 130823, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696774

RESUMO

Knowledge on the composition and characteristics of dissolved organic matter (DOM) in complex shale gas wastewater (SGW) is critical to evaluate environmental risks and to determine effective management strategies. Herein, five SGW samples from four key shale gas blocks in the Sichuan Basin, China, were comprehensively characterized. Specifically, FT-ICR MS was employed to provide insights into the sources, composition, and characteristics of SGW DOM. Organic matter was characterized by low average molecular weight, high saturation degree, and low aromaticity. Notably, the absence of correlations between molecular-level parameters and spectral indexes might be attributed to the high complexity and variability of SGW. The unique distribution depicted in van Krevelen diagrams suggested various sources of DOM in SGW, such as microbially derived organics in shales and biochemical transformations. Moreover, linear alkyl benzene sulfonates, as well as associated biodegraded metabolites and coproducts, were identified in SGW, implying the distinct anthropogenic imprints and abundant microbial activities. Furthermore, high DOC removal rates (31.42-79.23 %) were achieved by biological treatment, fully supporting the inherently labile nature of SGW and the feasibility of biodegradation for SGW management. Therefore, we conclude that DOM in SGW is a complex but mostly labile mixture reflecting both autochthonous and anthropogenic sources.


Assuntos
Gás Natural , Águas Residuárias , Matéria Orgânica Dissolvida , Rios , Biodegradação Ambiental
12.
Environ Sci Technol ; 56(22): 16104-16114, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36322125

RESUMO

Toxic and odorous iodophenols are commonly identified as disinfection by-products (DBPs) in drinking water. Herein, ng/L levels of iodophenols were identified in river water, wastewater treatment plant effluent, and medical wastewater, with the simultaneous identification of µg/L to mg/L levels of iodide (I-) and total organic iodine (TOI). Oxidation experiment suggested that the I-, TOI, and iodophenols could be oxidized by ferrate [Fe(VI)], and more than 97% of TOI had been transformed into stable and nontoxic IO3-. Fe(VI) initially cleaved the C-I bond of iodophenols and led to the deiodination of iodophenols. The resulted I- was swiftly oxidized into HOI and IO3-, with the intermediate phenolic products be further oxidized into lower molecular weight products. The Gibbs free energy change (ΔG) of the overall reaction was negative, indicating that the deiodination of iodophenols by Fe(VI) was spontaneous. In the disinfection of iodine-containing river water, ng/L levels of iodophenols and chloro-iodophenols formed in the reaction with NaClO/NH2Cl, while Fe(VI) preoxidation was effective for inhibiting the formation of iodinated DBPs. Fe(VI) exhibited multiple functions for oxidizing organic iodine, abating their acute toxicity/cytotoxicity and controlling the formation of iodinated DBPs for the treatment of iodide/organic iodine-containing waters.


Assuntos
Desinfetantes , Água Potável , Iodo , Poluentes Químicos da Água , Purificação da Água , Iodetos , Halogenação , Poluentes Químicos da Água/química , Purificação da Água/métodos , Desinfecção/métodos
13.
Water Res ; 220: 118703, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35671682

RESUMO

Shale gas wastewater (SGW) has great potential for the recovery of valuable elements, but it also poses risks in terms of environmental pollution, with heavy metals and naturally occurring radioactive materials (NORM) being of major concerns. However, many of these species have not been fully determined. For the first time, we identify the elements present in SGW from the Sichuan Basin and consequently draw a comprehensive periodic table, including 71 elements in 15 IUPAC groups. Based on it, we analyze the elements possessing recycling opportunities or with risk potentials. Most of the metal elements in SGW exist at very low concentrations (< 0.2 mg/L), including rare earth elements, revealing poor economic feasibility for recovery. However, salts, strontium (Sr), lithium (Li), and gallium (Ga) are in higher concentrations and have impressive market demands, hence great potential to be recovered. As for environmental burdens related to raw SGW management, salinity, F, Cl, Br, NO3-, Ba, B, and Fe, Cu, As, Mn, V, and Mo pose relatively higher threats in view of the concentrations and toxicity. The radioactivity is also much higher than the safety range, with the gross α activity and gross ß activity in SGW ranging from 3.71-83.4 Bq/L, and 1.62-18.7 Bq/L, respectively and radium-226 as the main component. The advanced combined process "pretreatment-disk tube reverse osmosis (DTRO)" with pilot-scale is evaluated for the safe reuse of SGW. This process has high efficiency in the removal of metals and total radioactivity. However, the gross α activity of the effluent (1.3 Bq/L) is slightly higher than the standard for discharge (1 Bq/L), which is thus associated with potential long-term environmental hazards.


Assuntos
Metais Pesados , Poluentes Radioativos da Água , Metais Pesados/análise , Gás Natural , Radioisótopos , Águas Residuárias , Poluentes Radioativos da Água/análise
14.
Environ Res ; 212(Pt D): 113486, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597290

RESUMO

Membrane processes are widely applied in shale gas flowback and produced water (SGFPW) reuse. However, particulate matters and organic matters aggravate membrane fouling, which is one of the major restrictions on SGFPW reuse. The present study proposed fixed bed adsorption using granular activated carbon (GAC) combined with ultrafiltration (UF) for the first time to investigate the treatment performance and membrane fouling mechanism. The adsorption of GAC for SGFPW was best described by the Temkin isotherm model and the pseudo-second-order kinetic model. GAC fixed bed pretreatment with different empty bed contact times (EBCT) (30, 60 and 90 min) showed the significant removal rate for dissolved organic carbon (DOC) and turbidity, which was 34.7%-42.4% and 98.1%-98.9%, respectively. According to characterization of UF membrane fouling layer, particulate matters and organic matters caused major part of membrane fouling. After being treated by GAC fixed bed, total fouling index (TFI) and hydraulic irreversible fouling index (HIFI) respectively decreased by more than 32.5% and 18.3% respectively, showing the mitigation effect of GAC fixed bed on membrane fouling. According to the XDLVO theory, GAC fixed bed also mitigated membrane fouling by reducing the hydrophobic interactions between the foulants and the UF membrane. The integrated GAC fixed bed-UF process produced high-quality effluents that met the water quality standards of SGFPW internal reuse, which was an effective technology of the SGFPW reuse.


Assuntos
Ultrafiltração , Purificação da Água , Adsorção , Carvão Vegetal/química , Membranas Artificiais , Gás Natural , Águas Residuárias/química
16.
Water Res ; 211: 118068, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35066257

RESUMO

In this article, we show that enzymatic hydrolysis of a biodegradable polyester (poly(ε-caprolactone)) by Amano Lipase PS in an aqueous (buffer) environment yielded rapidly an excessive number of microplastic particles; merely 0.1 g of poly(ε-caprolactone) film was demonstrated to yield millions of particles. There were also indications of non-enzymatic hydrolysis at the same conditions, but this did not yield any particles within the time frame of the experiment (up to 6 days). Microplastic particles formed had irregular shapes with an average size of around 10 µm, with only a few reaching 60 µm. The formation of microplastic particles resulted from the uneven hydrolysis/erosion rate across the polymer film surface, which led to a rough and undulating surface with ridge, branch, and rod-shaped micro-protruding structures. The consequent detachment and fragmentation of these micro-sized protruding structures resulted in the release of microplastics to the surroundings. Together with microplastics, hydrolysis products such as acidic monomers and oligomers were also released during the enzymatic hydrolysis process, causing a pH decrease in the surrounding liquid. The results suggest that the risk of microplastic pollution from biodegradable plastics is notable despite their biodegradation. Special attention needs to be paid when using and disposing of biodegradable plastics, considering the enormous impact of the paradigm shift towards more biodegradable products on the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Biodegradação Ambiental , Hidrólise , Plásticos , Polímeros , Poluentes Químicos da Água/análise
17.
Bioresour Technol ; 344(Pt A): 126191, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34710593

RESUMO

Shale gas wastewater (SGW) with complex composition and high salinity needs an economical and efficient method of treatment with the main goal to remove organics. In this study, a coupled system consisting of ozonation and moving-bed-biofilm submerged membrane bioreactor (MBBF-SMBR) was comprehensively evaluated for SGW treatment and compared with a similar train comprising ozonation and submerged membrane bioreactor (SMBR) without addition of carriers attaching biofilm. The average removal rates of MBBF-SMBR were 77.8% for dissolved organic carbon (DOC) and 37.0% for total nitrogen (TN), higher than those observed in SMBR, namely, 73.9% for DOC and 18.6% for TN. The final total membrane resistance in SMBR was 40.1% higher than that in MBBF-SMBR. Some genera that specifically contribute to organic removal were identified. Enhanced gene allocation for membrane transport and nitrogen metabolism was found in MBBF-SMBR biofilm, implying that this system has significant industrial application potential for organics removal from SGW.


Assuntos
Ozônio , Águas Residuárias , Biofilmes , Reatores Biológicos , Matéria Orgânica Dissolvida , Membranas Artificiais , Gás Natural , Eliminação de Resíduos Líquidos
18.
Sci Total Environ ; 797: 149181, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34311379

RESUMO

Low-cost gravity-driven membrane (GDM) filtration has the potential to efficiently manage highly decentralized shale gas wastewater (SGW). In this work, the feasibility of combining low dosage pre-ozonation with the GDM process was evaluated in the treatment of SGW. The results showed that pre-ozonation significantly increased the stable flux (372%) of GDM filtration, while slightly deteriorating the quality of the effluent water in terms of organic content (-14%). These results were mainly attributed to the conversion of macromolecular organics to low-molecular weight fractions by pre-ozonation. Interestingly, pre-ozonation markedly increased the flux (198%) in the first month of operation also for a GDM process added with granular activated carbon (GGDM). Nevertheless, the flux of O3-GGDM systems dropped sharply around the 25th day of operation, which might be due to the rapid accumulation of pollutants in the high flux stage and the formation of a dense fouling layer. Pre-ozonation remarkably influenced the microbial community structure. And O3-GDM systems were characterized by distinct core microorganisms, which might degrade specific organics in SGW. Furthermore, O3-GDM outperformed simple GDM as a pretreatment for RO. These findings can provide valuable references for combining oxidation technologies with the GDM process in treating refractory wastewater.


Assuntos
Ozônio , Purificação da Água , Filtração , Membranas Artificiais , Gás Natural , Águas Residuárias
19.
Water Res ; 196: 117041, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774348

RESUMO

Biological treatment technology is increasingly explored in shale gas wastewater (SGW) treatment owing to its cost effectiveness and requires efforts to improve its efficacy. In this work, ozone and ferrate(VI) oxidation pre-treatment were evaluated to enhance the performance of the subsequent biologically active filtration (BAF) in the removal of organic contaminants. The oxidation improved the SGW biodegradability and organic composition under relative high salinity (~20 g/L). Due to the degradation activity of microorganisms, the organics removal efficiency in the BAF system was observed to gradually improve and then reaching stability in long-term continuous-mode operation. The removal rate of dissolved organic carbon (DOC) of the ozone-BAF (O3-BAF) and the ferrate(VI)-BAF (Fe(VI)-BAF) systems was 83.2% and 82.8% , respectively, higher than that of BAF alone (80.9%). This increase was attributed to higher activity and content of microorganisms in O3-BAF and Fe(VI)-BAF systems. Two uncultured bacterial species with high abundance of 7.2-21.0% and 2.24-22.31% in genus Rehaibacterium and genus Methyloversatilis were significantly correlated with DOC removal and fluorescent organics removal, respectively. More research is needed to understand whether the species were new and their specific function. This study provides valuable suggestions for extracting safe water from SGW with an efficient treatment train.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Filtração , Gás Natural , Oxirredução , Águas Residuárias , Poluentes Químicos da Água/análise
20.
J Colloid Interface Sci ; 591: 343-351, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33618292

RESUMO

The nonsolvent induced phase separation (NIPS) method for ultrafiltration (UF) membrane fabrication relies on the extensive use of traditional solvents, thus ranking first in terms of ecological impacts among all the membrane fabrication steps. Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean), as a green solvent, was utilized in this study to fabricate poly(vinyl chloride) (PVC) UF membranes. Subsequently, in post-treatment process, zwitterionic polymer, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (DMAPS), was grafted onto the membrane surface to enhance its anti-fouling properties using a greener surface-initiated activator regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP) reaction. This novel method used low toxicity chemicals, avoiding the environmental hazards of traditional ATRP, and greatly improving the reaction efficiency. We systematically studied the grafting time effect on the resulted membranes using sodium alginate as the foulant, and found that short grafting time (30 min) achieved excellent membrane performance: pure water permeability of 2872 L m-2 h-1 bar-1, flux recovery ratio of 86.4% after 7-hour fouling test, and foulant rejection of 96.0%. This work discusses for the first time the greener procedures with lower environmental impacts in both fabrication and modification processes of PVC UF membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...