Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Plant Commun ; : 100936, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689499

RESUMO

Cytokinins are a type of mobile phytohormone that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase, and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase (CKX). Cytokinins bind to histidine receptor kinases (HKs) in the endoplasmic reticulum (ER) or plasma membrane (PM) and relay signals to response regulators (RRs) in the nucleus by shuttle proteins known as histidine phosphotransfer proteins (HPs). The movements of cytokinins from sites of biosynthesis to signal perception sites usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually be Exported Transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in cytokinin metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.

2.
Plant Cell ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657101

RESUMO

Lignin production marked a milestone in vascular plant evolution, and the emergence of syringyl (S)-lignin is lineage-specific. S-lignin biosynthesis in angiosperms, mediated by ferulate 5-hydroxylase (F5H, CYP84A1), has been considered a recent evolutionary event. F5H uniquely requires the cytochrome b5 protein CB5D as an obligatory redox partner for catalysis. However, it remains unclear how CB5D functionality originated and whether it co-evolved with F5H. We reveal here the ancient evolution of CB5D-type function supporting F5H-catalyzed S-lignin biosynthesis. CB5D emerged in charophyte algae, the closest relatives of land plants, and is conserved and proliferated in embryophytes, especially in angiosperms, suggesting functional diversification of the CB5 family before terrestrialization. A sequence motif containing acidic amino residues in helix 5 of the CB5 heme-binding domain contributes to the retention of CB5D function in land plants but not in algae. Notably, CB5s in the S-lignin-producing lycophyte Selaginella lack these residues, resulting in no CB5D-type function. An independently evolved S-lignin biosynthetic F5H (CYP788A1) in Selaginella relies on NADPH-dependent cytochrome P450 reductase as sole redox partner, distinct from angiosperms. These results suggest that angiosperm F5Hs co-opted the ancient CB5D, forming a modern cytochrome P450 monooxygenase system for aromatic ring meta-hydroxylation, enabling the re-emergence of S-lignin biosynthesis in angiosperms.

3.
Angew Chem Int Ed Engl ; 63(18): e202402369, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446496

RESUMO

Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.

4.
Chem Commun (Camb) ; 60(14): 1872-1875, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38240726

RESUMO

The pressure dependent reaction mechanism of CO2 hydrogenation over In2O3 was investigated. CO2 hydrogenation on In2O3 can produce methanol only at high pressure, while the atmospheric pressure operation leads to the formation of CO. The conversion from HCOO* to H3CO* is accelerated at high pressure, leading to the formation of methanol with the formate route (CO2* → HCOO* → H3CO* → H3COH).

5.
Plant Biotechnol J ; 22(2): 330-346, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795899

RESUMO

Grass lignocelluloses feature complex compositions and structures. In addition to the presence of conventional lignin units from monolignols, acylated monolignols and flavonoid tricin also incorporate into lignin polymer; moreover, hydroxycinnamates, particularly ferulate, cross-link arabinoxylan chains with each other and/or with lignin polymers. These structural complexities make grass lignocellulosics difficult to optimize for effective agro-industrial applications. In the present study, we assess the applications of two engineered monolignol 4-O-methyltransferases (MOMTs) in modifying rice lignocellulosic properties. Two MOMTs confer regiospecific para-methylation of monolignols but with different catalytic preferences. The expression of MOMTs in rice resulted in differential but drastic suppression of lignin deposition, showing more than 50% decrease in guaiacyl lignin and up to an 90% reduction in syringyl lignin in transgenic lines. Moreover, the levels of arabinoxylan-bound ferulate were reduced by up to 50%, and the levels of tricin in lignin fraction were also substantially reduced. Concomitantly, up to 11 µmol/g of the methanol-extractable 4-O-methylated ferulic acid and 5-7 µmol/g 4-O-methylated sinapic acid were accumulated in MOMT transgenic lines. Both MOMTs in vitro displayed discernible substrate promiscuity towards a range of phenolics in addition to the dominant substrate monolignols, which partially explains their broad effects on grass phenolic biosynthesis. The cell wall structural and compositional changes resulted in up to 30% increase in saccharification yield of the de-starched rice straw biomass after diluted acid-pretreatment. These results demonstrate an effective strategy to tailor complex grass cell walls to generate improved cellulosic feedstocks for the fermentable sugar-based production of biofuel and bio-chemicals.


Assuntos
Metiltransferases , Oryza , Metiltransferases/genética , Metiltransferases/metabolismo , Oryza/genética , Oryza/metabolismo , Lignina/metabolismo , Flavonoides/metabolismo , Parede Celular/metabolismo
6.
Cancer Med ; 12(15): 16076-16086, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341068

RESUMO

BACKGROUND: Systemic chemotherapy or chemoradiation therapy has proven to be effective in treating advanced biliary tract carcinoma (BTC). However, its efficacy in the adjuvant setting remains controversial. Therefore, this study aimed to determine the prognostic significance of genomic biomarkers in resected BTC and their potential role in stratifying patients for adjuvant treatment. METHODS: We retrospectively reviewed 113 BTC patients who underwent curative-intent surgery and had available tumor sequencing data. Disease-free survival (DFS) was the primary outcome examined and univariate analysis was used to identify gene mutations with prognostic value. Favorable and unfavoratble gene subsets were distinguished from the selected genes through grouping, respectively. Multivariate Cox regression was used to identify independent prognostic factors of DFS. RESULTS: Our results indicated that mutations in ACVR1B, AR, CTNNB1, ERBB3, and LRP2 were favorable mutations, while mutations in ARID1A, CDKN2A, FGFR2, NF1, NF2, PBRM1, PIK3CA, and TGFBR1 were unfavorable mutations. In addition to age, sex, and node positive, favorable genes (HR = 0.15, 95% CI = 0.04-0.48, p = 0.001) and unfavorable genes (HR = 2.86, 95% CI = 1.51-5.29, p = 0.001) were identified as independent prognostic factors for DFS. Out of the 113 patients, only 35 received adjuvant treatment whereas the majority (78) did not. For patients with both favorable and unfavorable mutations undetected, adjuvant treatment showed negative effect on DFS (median DFS: S441 vs. 956 days, p = 0.010), but there was no significant difference in DFS among those in other mutational subgroups. CONCLUSIONS: Genomic testing might be useful in guiding the decisions regarding adjuvant treatment in BTC.


Assuntos
Neoplasias dos Ductos Biliares , Sistema Biliar , Carcinoma , Humanos , Estudos Retrospectivos , Prognóstico , Neoplasias dos Ductos Biliares/patologia , Mutação , Quimioterapia Adjuvante , Adjuvantes Imunológicos , Sistema Biliar/patologia
7.
Viruses ; 15(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37112925

RESUMO

Despite highly effective vaccines, Marek's disease (MD) causes great economic loss to the poultry industry annually, largely due to the continuous emergence of new MD virus (MDV) strains. To explore the pathogenic characteristics of newly emerged MDV strains, we selected two strains (AH/1807 and DH/18) with clinically different pathotypes. We studied each strain's infection process and pathogenicity and observed differences in immunosuppression and vaccine resistance. Specific pathogen-free chickens, unvaccinated or vaccinated with CVI988, were challenged with AH/1807 or DH/18. Both infections induced MD damage; however, differences were observed in terms of mortality (AH/1807: 77.8%, DH/18: 50%) and tumor rates (AH/1807: 50%, DH/18: 33.3%). The immune protection indices of the vaccine also differed (AH/1807: 94.1, DH/18: 61.1). Additionally, while both strains caused interferon-ß and interferon-γ expression to decline, DH/18 infection caused stronger immunosuppression than AH/1807. This inhibition persisted even after vaccination, leading to increased replication of DH/18 that ultimately broke through vaccine immune protection. These results indicate that both strains have different characteristics, and that strains such as DH/18, which cause weaker pathogenic damage but can break through vaccine immune protection, require further attention. Our findings increase the understanding of the differences between epidemic strains and factors underlying MD vaccination failure in China.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Vacinas , Animais , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Galinhas , Virulência , China/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
8.
Clin Transl Med ; 13(3): e1214, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36855781

RESUMO

BACKGROUND: Targeted therapy combined with immune checkpoint inhibitors is considered a promising treatment for primary advanced hepatocellular carcinoma (HCC). Nevertheless, the difference between synchronous and asynchronous treatment of lenvatinib with programmed death receptor-1 (PD-1) inhibitor in advanced HCC is still unclear. The aim of this investigation is to evaluate the effectiveness of synchronous and asynchronous of lenvatinib and PD-1 inhibitor on the advanced HCC beyond oligometastasis. METHODS: In this study, 213 patients from four institutions in China were involved. Patients were split into two collections: (1) lenvatinib plus PD-1 inhibitor were used synchronously (synchronous treatment group); (2) patients in asynchronous treatment group received PD-1 inhibitor after 3 months of lenvatinib treatment prior to tumour progression. To analyse progression-free survival (PFS), overall survival (OS), efficacy and safety of patients in both groups, we employed propensity score matching (PSM). RESULTS: The 6-, 12- and 24-month OS rates were 100%, 93.4% and 58.1% in the synchronous treatment group and 100%, 71.5% and 25.3% in the asynchronous treatment group, respectively. In contrast to the asynchronous treatment group, the group treated synchronously exhibited a substantially enhanced OS (hazard ratio [HR], 0.45; 95% confidence interval [CI], 0.30-0.66; p < .001). The 6-, 12- and 18-month PFS rates were 82.6%, 42.6% and 10.8% in the synchronous treatment group and 63.3%, 14.2% and 0% in the asynchronous treatment group, respectively. A significant difference was observed in the PFS rate (HR, 0.46; 95% CI, 0.33-0.63; p < .001) between the two collections. CONCLUSIONS: Patients with advanced HCC beyond oligometastasis, simultaneous administration of lenvatinib and PD-1 inhibitor led to significant improvements in survival.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico
9.
ACS Omega ; 8(2): 2398-2405, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687052

RESUMO

Bubbling carbonation is the most widely used method for production of CaCO3. A structure-controllable preparation of calcium carbonate with homogeneous crystallinity and narrow particle size distribution is generally required. In this work, a gas distributor is designed and fabricated by light-curing three-dimensional (3D) printing technology to optimize the pore size and distribution of the distributor. The printed gas distributor is combined with a home-made glass vessel to form a simple carbonation reactor without the need for stirring. With the optimized gas flow rate and concentration of Ca(OH)2, this reactor produces small-sized bubbles continuously and uniformly. A homogeneous bubble flow regime can be thus easily formed with the printed distributor, which leads to an enhanced production of calcium carbonate at room temperature with a uniform morphology and narrow particle size distribution. The time required for carbonization is significantly reduced as well. The present study extends the 3D printing to the construction of bubbling reactors with broad applications beyond production of CaCO3.

10.
Sci Adv ; 9(2): eade4389, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630494

RESUMO

Cytochrome P450 system consists of P450 monooxygenase and redox pattern(s). While the importance of monooxygenases in plant metabolism is well documented, the metabolic roles of the related redox components have been largely overlooked. Here, we show that distinct electron transfer chains are recruited in phenylpropanoid-monolignol P450 systems to support the synthesis and distribution of different classes of phenolics in different plant tissues. While Arabidopsis cinnamate 4-hydroxylase adopts conventional NADPH-cytochrome P450 oxidoreductase (CPR) electron transfer chain for its para-hydroxylation reaction, ferulate 5-hydroxylase uses both NADPH-CPR-cytochrome b5 (CB5) and NADH-cytochrome b5 reductase-CB5 chains to support benzene ring 5-hydroxylation, in which the former route is primarily recruited in the stem for syringyl lignin synthesis, while the latter dominates in the syntheses of 5-hydroxylated phenolics in seeds and seed coat suberin. Our study unveils an additional layer of complexity and versatility of P450 system that the plants evolved for diversifying phenolic repertoires.


Assuntos
Sistema Enzimático do Citocromo P-450 , Fenóis , Catálise , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , NADP/metabolismo , Oxirredução , Transporte de Elétrons/fisiologia , Fenóis/metabolismo , Lignina/biossíntese , Arabidopsis
11.
J Oncol ; 2023: 5141836, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36711025

RESUMO

In this study, we investigated the role of tumor microenvironment and serum differential metabolites in intrahepatic cholangiocarcinoma (ICC) carcinogenesis, providing new evidence for ICC treatment. Serum samples from healthy individuals and ICC patients were collected for metabolomic analysis. The purine metabolites such as inosine, guanosine, hypoxanthine, and xanthine were increased in patient serum. TCGA database samples were collected, and the correlation between purine metabolism-related genes and ICC clinical features was analyzed using R language to obtain the differential genes including PPAT, PFAS, ATIC, and IMPDH2. High PPAT expression was associated with poor ICC prognosis. A PPAT silencing model in HCCC-9810 cells was constructed. The cell phenotype was examined by qRT-PCR, CCK-8, transwell, and flow cytometry, showing a decrease in IMPDH1 expression, colony and invasive cells numbers, and an increase in apoptosis. Guanosine reversed IMPDH1 expression in HCCC-9810 cells, promoting the secretion of inflammatory factors IL-6, IL-8, OPN, VEGF, and VCAM-1 and intensifying epithelial-mesenchymal transition (EMT) progression in the cells. In nude mice, the IMPDH1 inhibitory drug MMF inhibited tumor growth and reduced the expression of tumor stem cell characteristic markers CD133 and SOX2. Guanosine accelerated the malignant progression of ICC inhibition of purine metabolism-related genes, PPAT and IMPDH2, suppressed the malignant phenotype in HCCC-9810 cells, and inhibited tumor growth.

12.
Plant Commun ; 4(2): 100468, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36307987

RESUMO

Cytokinins (CKs), primarily trans-zeatin (tZ) and isopentenyladenine (iP) types, play critical roles in plant growth, development, and various stress responses. Long-distance transport of tZ-type CKs meidated by Arabidopsis ATP-binding cassette transporter subfamily G14 (AtABCG14) has been well studied; however, less is known about the biochemical properties of AtABCG14 and its transporter activity toward iP-type CKs. Here we reveal the biochemical properties of AtABCG14 and provide evidence that it is also required for long-distance transport of iP-type CKs. AtABCG14 formed homodimers in human (Homo sapiens) HEK293T, tobacco (Nicotiana tabacum), and Arabidopsis cells. Transporter activity assays of AtABCG14 in Arabidopsis, tobacco, and yeast (Saccharomyces cerevisiae) showed that AtABCG14 may directly transport multiple CKs, including iP- and tZ-type species. AtABCG14 expression was induced by iP in a tZ-type CK-deficient double mutant (cypDM) of CYP735A1 and CYP735A2. The atabcg14 cypDM triple mutant exhibited stronger CK-deficiency phenotypes than cypDM. Hormone profiling, reciprocal grafting, and 2H6-iP isotope tracer experiments showed that root-to-shoot and shoot-to-root long-distance transport of iP-type CKs were suppressed in atabcg14 cypDM and atabcg14. These results suggest that AtABCG14 participates in three steps of the circular long-distance transport of iP-type CKs: xylem loading in the root for shootward transport, phloem unloading in the shoot for shoot distribution, and phloem unloading in the root for root distribution. We found that AtABCG14 displays transporter activity toward multiple CK species and revealed its versatile roles in circular long-distance transport of iP-type CKs. These findings provide new insights into the transport mechanisms of CKs and other plant hormones.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas , Células HEK293 , Proteínas de Membrana Transportadoras/metabolismo
14.
Methods Enzymol ; 676: 133-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36280348

RESUMO

Lignin is a complex heterogenous polymer derived from oxidative radical polymerization of three monolignols, i.e., p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These lignin monomeric precursors structurally differ in their methoxy groups of the benzene rings. In phenylpropanoid-monolignol biosynthetic pathway, the endoplasmic reticulum (ER)-resident cytochrome P450 monooxygenases, cinnamate 4-hydroxylase, coumaroyl ester 3'-hydroxylase and ferulate 5-hydroxylase, establish the key structural characteristics of monolignols. The catalysis of cytochrome P450 monooxygenase requires reducing power, which is supplied by the ER electron transfer chains, composed of cytochrome P450 oxidoreductase (CPR), cytochrome b5 reductase (CBR) and/or cytochrome b5 protein (CB5), from cofactor NADPH or NADH. While NADPH-dependent CPR serves as the typical electron donor for most P450 enzymes, in some cases, the CBR-CB5 or CPR-CB5 electron transfer system also transfers electrons to the terminal P450 enzymes. There are tremendous studies focusing on the discovery and characterization of cytochrome P450 monooxygenases. However, very limited attention has been paid to the versatility and the roles of electron transfer components in the P450 catalytic system. Due to the membrane-residence property of both P450 enzymes and electron transfer components, it is challenging to establish an effective experimental system to evaluate the functional association of P450s with their redox partners. This chapter describes a yeast cell biocatalytic system and the related experimental procedures for comparatively assessing the functional relationship of monolignol biosynthetic P450 enzymes and different redox partners in their catalysis.


Assuntos
Citocromo-B(5) Redutase , Lignina , Citocromo-B(5) Redutase/metabolismo , Lignina/metabolismo , NADP , Transcinamato 4-Mono-Oxigenase/metabolismo , Citocromos b/metabolismo , Benzeno , NAD/metabolismo , NADPH-Ferri-Hemoproteína Redutase/química , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução , Ésteres
15.
Front Plant Sci ; 13: 984174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212330

RESUMO

Cytochrome b 5 (CB5) is a small heme-binding protein, known as an electron donor delivering reducing power to the terminal enzymes involved in oxidative reactions. In plants, the CB5 protein family is substantially expanded both in its isoform numbers and cellular functions, compared to its yeast and mammalian counterparts. As an electron carrier, plant CB5 proteins function not only in fatty acid desaturation, hydroxylation and elongation, but also in the formation of specialized metabolites such as flavonoids, phenolic esters, and heteropolymer lignin. Furthermore, plant CB5s are found to interact with different non-catalytic proteins such as ethylene signaling regulator, cell death inhibitor, and sugar transporters, implicating their versatile regulatory roles in coordinating different metabolic and cellular processes, presumably in respect to the cellular redox status and/or carbon availability. Compared to the plentiful studies on biochemistry and cellular functions of mammalian CB5 proteins, the cellular and metabolic roles of plant CB5 proteins have received far less attention. This article summarizes the fragmentary information pertaining to the discovery of plant CB5 proteins, and discusses the conventional and peculiar functions that plant CB5s might play in different metabolic and cellular processes. Gaining comprehensive insight into the biological functions of CB5 proteins could offer effective biotechnological solutions to tailor plant chemodiversity and cellular responses to environment stimuli.

16.
Phys Chem Chem Phys ; 24(41): 25522-25529, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36254658

RESUMO

Indium oxide is a promising catalyst for CO2 hydrogenation to methanol and has been extensively investigated in recent years. However, the studies on doped In2O3 for methanol synthesis are relatively few, and tungsten-doped In2O3 has not been reported yet. Herein, the mechanism of the methanol synthesis from CO2 hydrogenation on the defective W-doped In2O3 model (W-In2O3_D) has been investigated via density functional theory (DFT) calculations. The oxygen vacancy on the In2O3 catalyst is essential for the activation and conversion of CO2. The introduction of tungsten results in higher electron density and electron localization on the oxygen vacancy, thus facilitating the activation of CO2. The methanol synthesis on the W-In2O3_D model takes the formate route via the H3CO intermediate. Compared with the In2O3_D model, the cleavage of the C-O bond, the removal of H2O*, and the conversion of HCOO* are promoted by the addition of W. Based on the energetic span model, the turnover frequency (TOF) for the methanol synthesis from CO2 hydrogenation on the W-In2O3_D model is predicted as 9.0 × 10-3 s-1, which is much higher than the TOF of 4.5 × 10-6 s-1 on the In2O3_D model. Overall, the introduction of tungsten makes the CO2 hydrogenation to methanol kinetically more favorable.

17.
Phytomedicine ; 106: 154417, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36063584

RESUMO

BACKGROUND: Securinine is an alkaloid identified from the roots and leaves of the shrub Flueggea suffruticosa (Pall.) Baill. The molecular structure of securinine consists of four rings, including three chiral centers. It has been suggested that securinine can be chemically synthesized from tyrosine and lysine. Securinine has long been used to treat central nervous system diseases. In recent years, more and more evidence shows that securinine also has anticancer activity, which has not been systematically discussed and analyzed. PURPOSE: This study aims to propose an overall framework to describe the molecular targets of securinine in different signal pathways, and discuss the current status and prospects of each pathway, so as to provide a theoretical basis for the development securinine as an effective anticancer drug. METHODS: The research databases on the anticancer activity of securinine from PubMed, Scopus, Web of Science and ScienceDirect to 2021 were systematically searched. This paper follows the Preferred Reporting Items and Meta-Analysis guidelines. RESULTS: Securinine has the ability to kill a variety of human cancer cells, including, leukemia as well as prostate, cervical, breast, lung, and colon cancer cells. It can regulate the signal pathways of phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin, Wnt and Janus kinase-signal transducer and activator of transcription, promote cancer cell apoptosis and autophagy, and inhibit cancer cell metastasis. Securinine also has the activity of inducing leukemia cell differentiation. CONCLUSION: Although there has been some experimental evidence indicating the anticancer effect of securinine and its possible pharmacology, in order to design more effective anticancer drugs, it is necessary to study the synergy of intracellular signaling pathways. More in vivo experiments and even clinical studies are needed, and the synergy between securinine and other drugs is also worth studying.


Assuntos
Alcaloides , Leucemia , Azepinas , Linhagem Celular Tumoral , Compostos Heterocíclicos de Anel em Ponte , Humanos , Janus Quinases , Lactonas/farmacologia , Leucemia/tratamento farmacológico , Lisina , Masculino , Fosfatidilinositóis , Piperidinas , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Tirosina
18.
RSC Adv ; 12(23): 14639-14643, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702247

RESUMO

In this communication, using rice wine residue (RWR) as the support, an edible γ-cyclodextrin-metal-organic framework/RWR (γ-CD-MOF/RWR) composite with a macroscopic morphology was synthesized. The obtained edible composite is promising for applications in drug delivery, adsorption, food processing, and others.

19.
Huan Jing Ke Xue ; 43(1): 239-246, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989508

RESUMO

The abundance and morphological characteristics of microplastics in the surface sediments of mangrove wetlands in the Jiulong River estuary were analyzed. The main sources of microplastics were also explored in detail. The results showed that the abundance of microplastics ranged from 640 to 1140 n·kg-1 (dry sediment), with an average of 935 n·kg-1, exhibiting a medium level compared with other domestic and abroad mangrove areas. The microscopic observation found that the microplastics were granular (39%), fragmented (31%), and fibrous (30%); the color was mainly transparent (55%); and the particle size was less than 1 mm (92%). As observed via Raman spectroscopy, the main polymer types of the microplastics were identified to be polyethylene, polyethylene terephthalate, and polypropylene, accounting for 57%, 34%, and 9%, respectively. The main sources of microplastics were the plastic waste from aquaculture nearby, urban and rural domestic or industrial wastewater in the basin, and the plastic waste transported here by the tide. Additionally, SEM-EDS results showed that the surface of the microplastics had the characteristics of depression, porosity, and tearing, and some heavy metal elements such as Pb, Cd, Hg, Cr, Fe, Mn, Zn, and Cu were attached to the microplastics. Microplastics may be transferred to the sediments as carriers of heavy metals, posing a potential threat to wetland ecological security.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados/análise , Microplásticos , Plásticos , Medição de Risco , Rios , Poluentes Químicos da Água/análise
20.
Biodes Res ; 2022: 9863496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850147

RESUMO

Plants adapt to their changing environments by sensing and responding to physical, biological, and chemical stimuli. Due to their sessile lifestyles, plants experience a vast array of external stimuli and selectively perceive and respond to specific signals. By repurposing the logic circuitry and biological and molecular components used by plants in nature, genetically encoded plant-based biosensors (GEPBs) have been developed by directing signal recognition mechanisms into carefully assembled outcomes that are easily detected. GEPBs allow for in vivo monitoring of biological processes in plants to facilitate basic studies of plant growth and development. GEPBs are also useful for environmental monitoring, plant abiotic and biotic stress management, and accelerating design-build-test-learn cycles of plant bioengineering. With the advent of synthetic biology, biological and molecular components derived from alternate natural organisms (e.g., microbes) and/or de novo parts have been used to build GEPBs. In this review, we summarize the framework for engineering different types of GEPBs. We then highlight representative validated biological components for building plant-based biosensors, along with various applications of plant-based biosensors in basic and applied plant science research. Finally, we discuss challenges and strategies for the identification and design of biological components for plant-based biosensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...