Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729157

RESUMO

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Assuntos
Axônios , Modelos Animais de Doenças , Glaucoma , Proteínas com Homeodomínio LIM , Regeneração Nervosa , Células Ganglionares da Retina , Fatores de Transcrição , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Glaucoma/genética , Glaucoma/patologia , Glaucoma/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Axônios/metabolismo , Axônios/patologia , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Camundongos Endogâmicos C57BL , Sobrevivência Celular/genética , Semaforinas/metabolismo , Semaforinas/genética , N-Metilaspartato/metabolismo
2.
Nat Commun ; 15(1): 30, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167860

RESUMO

Plant-derived alkaloids are an important class of pharmaceuticals. However, they still rely on phytoextraction to meet their diverse market demands. Since multistep biocatalytic cascades have begun to revolutionize the manufacture of natural or unnatural products, to address the synthetic challenges of alkaloids, herein we establish an artificially concise four-enzyme biocatalytic cascade with avoiding plant-derived P450 modification for synthesizing phenethylisoquinoline alkaloids (PEIAs) after enzyme discovery and enzyme engineering. Efficient biosynthesis of diverse natural and unnatural PEIAs is realized from readily available substrates. Most importantly, the scale-up preparation of the colchicine precursor (S)-autumnaline with a high titer is achieved after replacing the rate-limiting O-methylation by the plug-and-play strategy. This study not only streamlines future engineering endeavors for colchicine biosynthesis, but also provides a paradigm for constructing more artificial biocatalytic cascades for the manufacture of diverse alkaloids through synthetic biology.


Assuntos
Alcaloides , Biocatálise , Colchicina , Plantas
3.
Angew Chem Int Ed Engl ; 63(11): e202317726, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258338

RESUMO

The construction of structural complexity and diversity of natural products is crucial for drug discovery and development. To overcome high dark toxicity and poor photostability of natural photosensitizer perylenequinones (PQs) for photodynamic therapy, herein, we aim to introduce the structural complexity and diversity to biosynthesize the desired unnatural PQs in fungus Cercospora through synthetic biology-based strategy. Thus, we first elucidate the intricate biosynthetic pathways of class B PQs and reveal how the branching enzymes create their structural complexity and diversity from a common ancestor. This enables the rational reprogramming of cercosporin biosynthetic pathway in Cercospora to generate diverse unnatural PQs without chemical modification. Among them, unnatural cercosporin A displays remarkably low dark toxicity and high photostability with retention of great photodynamic anticancer and antimicrobial activities. Moreover, it is found that, unlike cercosporin, unnatural cercosporin A could be selectively accumulated in cancer cells, providing potential targets for drug development. Therefore, this work provides a comprehensive foundation for preparing unnatural products with customized functions through synthetic biology-based strategies, thus facilitating drug discovery pipelines from nature.


Assuntos
Ascomicetos , Perileno , Perileno/análogos & derivados , Fotoquimioterapia , Quinonas , Ascomicetos/metabolismo , Biologia Sintética , Perileno/farmacologia , Perileno/metabolismo
4.
J Clin Invest ; 134(3)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015636

RESUMO

Current treatments for neurodegenerative diseases and neural injuries face major challenges, primarily due to the diminished regenerative capacity of neurons in the mammalian CNS as they mature. Here, we investigated the role of Ezh2, a histone methyltransferase, in regulating mammalian axon regeneration. We found that Ezh2 declined in the mouse nervous system during maturation but was upregulated in adult dorsal root ganglion neurons following peripheral nerve injury to facilitate spontaneous axon regeneration. In addition, overexpression of Ezh2 in retinal ganglion cells in the CNS promoted optic nerve regeneration via both histone methylation-dependent and -independent mechanisms. Further investigation revealed that Ezh2 fostered axon regeneration by orchestrating the transcriptional silencing of genes governing synaptic function and those inhibiting axon regeneration, while concurrently activating various factors that support axon regeneration. Notably, we demonstrated that GABA transporter 2, encoded by Slc6a13, acted downstream of Ezh2 to control axon regeneration. Overall, our study underscores the potential of modulating chromatin accessibility as a promising strategy for promoting CNS axon regeneration.


Assuntos
Axônios , Traumatismos do Nervo Óptico , Animais , Camundongos , Axônios/metabolismo , Gânglios Espinais/metabolismo , Mamíferos , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo
5.
Cell Prolif ; 57(4): e13564, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37853840

RESUMO

'Human neural stem cells' jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human neural stem cells (hNSCs) in China. This standard specifies the technical requirements, test methods, test regulations, instructions for use, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for hNSCs, which is applicable to the quality control for hNSCs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that publication of the guideline will facilitate institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of hNSCs for clinical development and therapeutic applications.


Assuntos
Células-Tronco Neurais , Transplante de Células-Tronco , Humanos , Diferenciação Celular , China
6.
Cell Prolif ; 57(4): e13563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37881164

RESUMO

Human midbrain dopaminergic progenitors (mDAPs) are one of the most representative cell types in both basic research and clinical applications. However, there are still many challenges for the preparation and quality control of mDAPs, such as the lack of standards. Therefore, the establishment of critical quality attributes and technical specifications for mDAPs is largely needed. "Human midbrain dopaminergic progenitor" jointly drafted and agreed upon by experts from the Chinese Society for Stem Cell Research, is the first guideline for human mDAPs in China. This standard specifies the technical requirements, test methods, inspection rules, instructions for usage, labelling requirements, packaging requirements, storage requirements, transportation requirements and waste disposal requirements for human mDAPs, which is applicable to the quality control for human mDAPs. It was originally released by the China Society for Cell Biology on 30 August 2022. We hope that the publication of this guideline will facilitate the institutional establishment, acceptance and execution of proper protocols, and accelerate the international standardization of human mDAPs for clinical development and therapeutic applications.


Assuntos
Neurônios Dopaminérgicos , Mesencéfalo , Humanos , China , Neurônios Dopaminérgicos/metabolismo
7.
Cells ; 12(20)2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37887272

RESUMO

Traumatic brain injury usually triggers glial scar formation, neuroinflammation, and neurodegeneration. However, the molecular mechanisms underlying these pathological features are largely unknown. Using a mouse model of hippocampal stab injury (HSI), we observed that miR-331, a brain-enriched microRNA, was significantly downregulated in the early stage (0-7 days) of HSI. Intranasal administration of agomir-331, an upgraded product of miR-331 mimics, suppressed reactive gliosis and neuronal apoptosis and improved cognitive function in HSI mice. Finally, we identified IL-1ß as a direct downstream target of miR-331, and agomir-331 treatment significantly reduced IL-1ß levels in the hippocampus after acute injury. Our findings highlight, for the first time, agomir-331 as a pivotal neuroprotective agent for early rehabilitation of HSI.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Humanos , Gliose , Doenças Neuroinflamatórias , Inflamação/patologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , MicroRNAs/genética
8.
Nature ; 624(7992): 611-620, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37907096

RESUMO

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Assuntos
Senescência Celular , Quitinases , Microglia , Neurônios Motores , Primatas , Medula Espinal , Animais , Humanos , Biomarcadores/metabolismo , Quitinases/metabolismo , Microglia/enzimologia , Microglia/metabolismo , Microglia/patologia , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Primatas/metabolismo , Reprodutibilidade dos Testes , Análise da Expressão Gênica de Célula Única , Medula Espinal/metabolismo , Medula Espinal/patologia
9.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745499

RESUMO

Neurons in the mammalian central nervous system (CNS) gradually lose their intrinsic regeneration capacity during maturation mainly because of altered transcription profile. Recent studies have made great progress by identifying genes that can be manipulated to enhance CNS regeneration. However, as a complex process involving many genes and signaling networks, it is of great importance to deciphering the underlying neuronal chromatin and transcriptomic landscape coordinating CNS regeneration. Here we identify UTX, an X-chromosome associated gene encoding a histone demethylase, as a novel regulator of mammalian neural regeneration. We demonstrate that UTX acts as a repressor of spontaneous axon regeneration in the peripheral nerve system (PNS). In the CNS, either knocking out or pharmacological inhibiting UTX in retinal ganglion cells (RGCs) leads to significantly enhanced neuronal survival and optic nerve regeneration. RNA-seq profiling revealed that deleting UTX switches the RGC transcriptomics into a developmental-like state. Moreover, microRNA-124, one of the most abundant microRNAs in mature neurons, is identified as a downstream target of UTX and blocking endogenous microRNA124-5p results in robust optic nerve regeneration. These findings revealed a novel histone modification-microRNA epigenetic signaling network orchestrating transcriptomic landscape supporting CNS neural regeneration.

11.
Cell Death Differ ; 30(9): 2187-2199, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543710

RESUMO

ARID1A, an SWI/SNF chromatin-remodeling gene, is commonly mutated in cancer and hypothesized to be a tumor suppressor. Recently, loss-of-function of ARID1A gene has been shown to cause intellectual disability. Here we generate Arid1a conditional knockout mice and investigate Arid1a function in the hippocampus. Disruption of Arid1a in mouse forebrain significantly decreases neural stem/progenitor cells (NSPCs) proliferation and differentiation to neurons within the dentate gyrus (DG), increasing perinatal and postnatal apoptosis, leading to reduced hippocampus size. Moreover, we perform single-cell RNA sequencing (scRNA-seq) to investigate cellular heterogeneity and reveal that Arid1a is necessary for the maintenance of the DG progenitor pool and survival of post-mitotic neurons. Transcriptome and ChIP-seq analysis data demonstrate that ARID1A specifically regulates Prox1 by altering the levels of histone modifications. Overexpression of downstream target Prox1 can rescue proliferation and differentiation defects of NSPCs caused by Arid1a deletion. Overall, our results demonstrate a critical role for Arid1a in the development of the hippocampus and may also provide insight into the genetic basis of intellectual disabilities such as Coffin-Siris syndrome, which is caused by germ-line mutations or microduplication of Arid1a.


Assuntos
Anormalidades Múltiplas , Neoplasias , Animais , Feminino , Camundongos , Gravidez , Anormalidades Múltiplas/genética , Cromatina , Montagem e Desmontagem da Cromatina , Giro Denteado , Proteínas Nucleares/metabolismo
12.
Cell Death Differ ; 30(9): 2053-2065, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37553426

RESUMO

Embryonic neurogenesis is tightly regulated by multiple factors to ensure the precise development of the cortex. Deficiency in neurogenesis may result in behavioral abnormalities. Pd1 is a well-known inhibitory immune molecule, but its function in brain development remains unknown. Here, we find brain specific deletion of Pd1 results in abnormal cortical neurogenesis, including enhanced proliferation of neural progenitors and reduced neuronal differentiation. In addition, neurons in Pd1 knockout mice exhibit abnormal morphology, both the total length and the number of primary dendrites were reduced. Moreover, Pd1cKO mice exhibit depressive-like behaviors, including immobility, despair, and anhedonia. Mechanistically, Pd1 regulates embryonic neurogenesis by targeting Pax3 through the ß-catenin signaling pathway. The constitutive expression of Pax3 partly rescues the deficiency of neurogenesis in the Pd1 deleted embryonic brain. Besides, the administration of ß-catenin inhibitor, XAV939, not only rescues abnormal brain development but also ameliorates depressive-like behaviors in Pd1cKO mice. Simultaneously, Pd1 plays a similar role in human neural progenitor cells (hNPCs) proliferation and differentiation. Taken together, our findings reveal the critical role and regulatory mechanism of Pd1 in embryonic neurogenesis and behavioral modulation, which could contribute to understanding immune molecules in brain development.


Assuntos
Neurônios , beta Catenina , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Encéfalo/metabolismo , Camundongos Knockout , Neurogênese , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
13.
J Hazard Mater ; 459: 132110, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37487335

RESUMO

Harmful cyanobacterial blooms (HCBs) are spreading in freshwater ecosystems worldwide, adversely affecting drinking water supplies, aquatic production, recreational and tourism activities. Therefore, the efficient and environmentally friendly method is still of interest to be developed to effectively control HCBs. Inspired by the excellent algicidal activity of cercosporin (CP), a novel metal-free algaecide SiO2@EDU@CP (EDU, N-ethyl-N'-(3-dimethylaminopropyl)urea) with flocculation and photoremoval functions, was successfully designed and prepared in one-step to simultaneously introduce CP and EDU on SiO2 nanoparticles. It could rapidly form algae flocs in 20 min with 97.1% flocculation rate, and remove Microcystis aeruginosa within 12 h with 91.0% algicidal rate under 23 W compact fluorescent light irradiation without any leaked CP detected. Additionally, odorant ß-cyclocitral and toxin microcystin-LR were both photodegraded after treatment of SiO2@EDU@CP. Further mechanistic studies showed that the introduction of EDU significantly reversed the zeta potential of SiO2-COOH to achieve the flocculation through neutral charge, and the photophysical characterization of SiO2@EDU@CP revealed the improved charge separation ability to generate reactive oxygen species. More importantly, the utility of SiO2@EDU@CP was well demonstrated by its effectiveness for algae from Taihu Lake under natural sunlight and inability to regrow after treatment. This study not only establishes a bifunctional algicide SiO2@EDU@CP to efficiently control HCBs, but also provides design possibilities to develop more novel and efficient algicides for the better control of practical HCBs.


Assuntos
Cianobactérias , Herbicidas , Microcystis , Ecossistema , Herbicidas/metabolismo , Floculação , Dióxido de Silício/metabolismo , Microcystis/metabolismo , Lagos/microbiologia , Proliferação Nociva de Algas
14.
Cell Death Differ ; 30(8): 1943-1956, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37433907

RESUMO

The ability of neural stem/progenitor cells (NSPCs) to proliferate and differentiate is required through different stages of neurogenesis. Disturbance in the regulation of neurogenesis causes many neurological diseases, such as intellectual disability, autism, and schizophrenia. However, the intrinsic mechanisms of this regulation in neurogenesis remain poorly understood. Here, we report that Ash2l (Absent, small or homeotic discs-like 2), one core component of a multimeric histone methyltransferase complex, is essential for NSPC fate determination during postnatal neurogenesis. Deletion of Ash2l in NSPCs impairs their capacity for proliferation and differentiation, leading to simplified dendritic arbors in adult-born hippocampal neurons and deficits in cognitive abilities. RNA sequencing data reveal that Ash2l primarily regulates cell fate specification and neuron commitment. Furthermore, we identified Onecut2, a major downstream target of ASH2L characterized by bivalent histone modifications, and demonstrated that constitutive expression of Onecut2 restores defective proliferation and differentiation of NSPCs in adult Ash2l-deficient mice. Importantly, we identified that Onecut2 modulates TGF-ß signaling in NSPCs and that treatment with a TGF-ß inhibitor rectifies the phenotype of Ash2l-deficient NSPCs. Collectively, our findings reveal the ASH2L-Onecut2-TGF-ß signaling axis that mediates postnatal neurogenesis to maintain proper forebrain function.


Assuntos
Células-Tronco Neurais , Neurogênese , Transdução de Sinais , Animais , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
Neurosci Bull ; 39(10): 1512-1532, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37326884

RESUMO

The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Plasticidade Neuronal , Neurônios , Animais , Camundongos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona Metiltransferases/metabolismo , Histonas/genética , Morfogênese , Neurônios/metabolismo
17.
Cell Prolif ; 56(9): e13439, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36878712

RESUMO

Microglia are the primary source of transglutaminase 2 (TGM2) in the brain; however, the roles of microglial TGM2 in neural development and disease are still not well known. The aim of this study is to elucidate the role and mechanisms of microglial TGM2 in the brain. A mouse line with a specific knockout of Tgm2 in microglia was generated. Immunohistochemistry, Western blot and qRT-PCR assays were performed to evaluate the expression levels of TGM2, PSD-95 and CD68. Confocal imaging, immunofluorescence staining and behavioural analyses were conducted to identify phenotypes of microglial TGM2 deficiency. Finally, RNA sequencing, qRT-PCR and co-culture of neurons and microglia were used to explore the potential mechanisms. Deletion of microglial Tgm2 causes impaired synaptic pruning, reduced anxiety and increased cognitive deficits in mice. At the molecular level, the phagocytic genes, such as Cq1a, C1qb and Tim4, are significantly down-regulated in TGM2-deficient microglia. This study elucidates a novel role of microglial TGM2 in regulating synaptic remodelling and cognitive function, indicating that microglia Tgm2 is essential for proper neural development.


Assuntos
Microglia , Proteína 2 Glutamina gama-Glutamiltransferase , Camundongos , Animais , Microglia/metabolismo , Neurônios/metabolismo , Encéfalo , Cognição
18.
Cell Prolif ; 56(5): e13447, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36916004

RESUMO

The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo , Proteínas Nucleares/genética , Neurogênese , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Cells ; 12(4)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36831225

RESUMO

Traumatic brain injury usually results in neuronal loss and cognitive deficits. Promoting endogenous neurogenesis has been considered as a viable treatment option to improve functional recovery after TBI. However, neural stem/progenitor cells (NSPCs) in neurogenic regions are often unable to migrate and differentiate into mature neurons at the injury site. Transglutaminase 2 (TGM2) has been identified as a crucial component of neurogenic niche, and significantly dysregulated after TBI. Therefore, we speculate that TGM2 may play an important role in neurogenesis after TBI, and strategies targeting TGM2 to promote endogenous neural regeneration may be applied in TBI therapy. Using a tamoxifen-induced Tgm2 conditional knockout mouse line and a mouse model of stab wound injury, we investigated the role and mechanism of TGM2 in regulating hippocampal neurogenesis after TBI. We found that Tgm2 was highly expressed in adult NSPCs and up-regulated after TBI. Conditional deletion of Tgm2 resulted in the impaired proliferation and differentiation of NSPCs, while Tgm2 overexpression enhanced the abilities of self-renewal, proliferation, differentiation, and migration of NSPCs after TBI. Importantly, injection of lentivirus overexpressing TGM2 significantly promoted hippocampal neurogenesis after TBI. Therefore, TGM2 is a key regulator of hippocampal neurogenesis and a pivotal therapeutic target for intervention following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Neurogênese , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Camundongos , Lesões Encefálicas Traumáticas/fisiopatologia , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos Knockout , Células-Tronco Neurais , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-36634979

RESUMO

INTRODUCTION: Mutations of CEL gene were first reported to cause a new type of maturity-onset diabetes of the young (MODY) denoted as MODY8 and then were also found in patients with type 1 (T1D) and type 2 diabetes (T2D). However, its genotype-phenotype relationship has not been fully determined and how carboxyl ester lipase (CEL) variants result in diabetes remains unclear. The aim of our study was to identify pathogenic variants of CEL in patients with diabetes and confirm their pathogenicity. RESEARCH DESIGN AND METHODS: All five patients enrolled in our study were admitted to Shandong Provincial Hospital and diagnosed with diabetes in the past year. Whole-exome sequencing was performed to identify pathogenic variants in three patients with MODY-like diabetes, one newborn baby with T1D and one patient with atypical T2D, as well as their immediate family members. Then the consequences of the identified variants were predicted by bioinformatic analysis. Furthermore, pathogenic effects of two novel CEL variants were evaluated in HEK293 cells transfected with wild-type and mutant plasmids. Finally, we summarized all CEL gene variants recorded in Human Gene Mutation Database and analyzed the mutation distribution of CEL. RESULTS: Five novel heterozygous variants were identified in CEL gene and they were predicted to be pathogenic by bioinformatic analysis. Moreover, in vitro studies indicated that the expression of CELR540C was remarkably increased, while p.G729_T739del variant did not significantly affect the expression of CEL. Both novel variants obviously abrogated the secretion of CEL. Furthermore, we summarized all reported CEL variants and found that 74.3% of missense mutations were located in exons 1, 3, 4, 10 and 11 and most missense variants clustered near catalytic triad, Arg-83 and Arg-443. CONCLUSION: Our study identified five novel CEL variants in patients with different subtypes of diabetes, expanding the gene mutation spectrum of CEL and confirmed the pathogenicity of several novel variants.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Recém-Nascido , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Carboxilesterase/genética , Carboxilesterase/metabolismo , Células HEK293 , Lipase/genética , Lipase/metabolismo , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...