Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 349: 122714, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38735366

RESUMO

AIMS: Non-alcoholic fatty liver disease (NAFLD) has risen as a significant global public health issue, for which vertical sleeve gastrectomy (VSG) has become an effective treatment method. The study sought to elucidate the processes through which PIM1 mitigates the advancement of NAFLD. The Pro-viral integration site for Moloney murine leukemia virus 1 (PIM1) functions as a serine/threonine kinase. Bioinformatics analysis revealed that reduced PIM1 expression in NAFLD. METHODS: To further prove the role of PIM1 in NAFLD, an in-depth in vivo experiment was performed, in which male C57BL/6 mice were randomly grouped to receive a normal or high-fat diet for 24 weeks. They were operated or delivered the loaded adeno-associated virus which the PIM1 was overexpressed (AAV-PIM1). In an in vitro experiment, AML12 cells were treated with palmitic acid to induce hepatic steatosis. KEY FINDINGS: The results revealed that the VSG surgery and virus delivery of mice alleviated oxidative stress, and apoptosis in vivo. For AML12 cells, the levels of oxidative stress, apoptosis, and lipid metabolism were reduced via PIM1 upregulation. Moreover, ML385 treatment resulted in the downregulation of the NRF2/HO-1/NQO1 signaling cascade, indicating that PIM1 mitigates NAFLD by targeting this pathway. SIGNIFICANCE: PIM1 alleviated mice liver oxidative stress and NAFLD induced by high-fat diet by regulating the NRF2/HO-1/NQO1 signaling Pathway.

2.
Nano Lett ; 24(15): 4641-4648, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579120

RESUMO

The intrinsic properties of materials play a substantial role in light-matter interactions, impacting both bulk metals and nanostructures. While plasmonic nanostructures exhibit strong interactions with photons via plasmon resonances, achieving efficient light absorption/scattering in other transition metals remains a challenge, impeding various applications related to optoelectronics, chemistry, and energy harvesting. Here, we propose a universal strategy to enhance light-matter interaction, through introducing voids onto the surface of metallic nanoparticles. This strategy spans nine metals including those traditionally considered optically inactive. The absorption cross section of void-filled nanoparticles surpasses the value of plasmonic (Ag/Au) counterparts with tunable resonance peaks across a broad spectral range. Notably, this enhancement is achieved under arbitrary polarizations and varied particle sizes and in the presence of geometric disorder, highlighting the universal adaptability. Our strategy holds promise for inspiring emerging devices in photocatalysis, bioimaging, optical sensing, and beyond, particularly when metals other than gold or silver are preferred.

3.
J Colloid Interface Sci ; 668: 232-242, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38677212

RESUMO

Inkjet printing is of great interest in the preparation of optoelectronic and microelectronic devices due to its low cost, low process temperature, versatile material compatibility, and ability to precisely manufacture multi-layer devices on demand. However, interlayer solvent erosion is a typical problem that limits the printing of organic semiconductor devices with multi-layer structures. In this study, we proposed a solution to address this erosion problem by designing polystyrene-block-poly(4-vinyl pyridine)-grafted Au nanoparticles (Au@PS-b-P4VP NPs). With a colloidal ink containing the Au@PS-b-P4VP NPs, we obtained a uniform monolayer of Au nano-crystal floating gates (NCFGs) embedded in the PS-b-P4VP tunneling dielectric (TD) layer using direct-ink-writing (DIW). Significantly, PS-b-P4VP has high erosion resistance against the semiconductor ink solvent, which enables multi-layer printing. An active layer of semiconductor crystals with high crystallinity and well-orientation was obtained by DIW. Moreover, we developed a strategy to improve the quality of the TD/semiconductor interface by introducing a polystyrene intermediate layer. We show that the NCFG memory devices exhibit a low threshold voltage (<3 V), large memory window (66 V), stable endurance (>100 cycles), and long-term retention (>10 years). This study provides universal guidance for printing functional coatings and multi-layer devices.

4.
Gen Physiol Biophys ; 43(2): 85-102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38477602

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide. Chronic activation of endoplasmic reticulum stress (ERS) in hepatocytes may promote the development of NAFLD, yet endoplasmic reticulum stress-related genes (ERSGs) have not been studied in NAFLD. Our aim is to study the relationship between ERSGs and the immune microenvironment of NAFLD patients and to construct predictive models. We screened 48 endoplasmic reticulum stress-related differentially expressed genes (ERSR-DEGs) using data from two GEO datasets and the GeneCards database. Enrichment analysis revealed that ERSR-DEGs are closely associated with immune-related pathways and functions. The immune infiltration profile of NAFLD was obtained by single sample gene set enrichment analysis (ssGSEA). There were significant differences in immune cell infiltration and immune function between NAFLD group and control group. Using 113 NAFLD samples, we explored two molecular clusters based on ERSR-DEGs. A five-gene SVM model was selected as the best machine learning model, and a nomogram based on five-gene SVM model showed good predictive efficiency. The mRNA expression levels of POR, PPP1R15A, FOS and FAS were significantly different between NAFLD mice and healthy mice. In conclusion, ERS is closely associated with the development of NAFLD. We established a promising and SVM-based predictive model to assess the risk of disease in patients with ERS subtypes and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse do Retículo Endoplasmático/genética , Hepatócitos
5.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341446

RESUMO

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

6.
Arch Pathol Lab Med ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38282571

RESUMO

CONTEXT.­: Eosinophilic solid and cystic renal cell carcinoma is now defined in the 5th edition of the 2022 World Health Organization classification of urogenital tumors. OBJECTIVE.­: To perform morphologic, immunohistochemical, and preliminary genetic studies about this new entity in China for the purpose of understanding it better. DESIGN.­: The study includes 18 patients from a regional tertiary oncology center in northern China (Tianjin, China). We investigated the clinical and immunohistochemical features of these cases. RESULTS.­: The mean age of patients was 49.6 years and the male to female ratio was 11:7. Macroscopically, 1 case had the classic cystic and solid appearance whereas the others appeared purely solid. Microscopically, all 18 tumors shared similar solid and focal macrocystic or microcystic growth pattern, and the cells were characterized by voluminous and eosinophilic cytoplasm, along with coarse amphophilic stippling. Immunohistochemically, most of the tumors had a predominant cytokeratin (CK) 20-positive feature, ranging from focal cytoplasmic staining to diffuse membranous accentuation. Initially, we separated these cases into different immunohistochemical phenotypes. Group 1 (7 of 18; 38.5%) was characterized by positive phospho-4EBP1 and phospho-S6, which can imply hyperactive mechanistic target of rapamycin complex 1 (mTORC1) signaling. Group 2 (4 of 18; 23%) was negative for NF2, probably implying a germline mutation of NF2. Group 3 (7 of 18; 38.5%) consisted of the remaining cases. One case had metastatic spread and exhibited an aggressive clinical course, and we detected cyclin-dependent kinase inhibitor 2A (CDKN2A) mutation in this case; other patients were alive and without disease progression. CONCLUSIONS.­: Our research proposes that eosinophilic solid and cystic renal cell carcinoma exhibits prototypical pathologic features with CK20 positivity and has aggressive potential.

7.
J Cell Mol Med ; 28(3): e18091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169083

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Algoritmos , Calibragem , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Apoptose
8.
Proc Natl Acad Sci U S A ; 120(52): e2312480120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38134197

RESUMO

Tetrafluoromethane (CF4), the simplest perfluorocarbons, is a permanently potent greenhouse gas due to its powerful infrared radiation adsorption capacity. The highly symmetric and robust C-F bond structure makes its activation a great challenge. Herein, we presented an innovated approach that efficiently activates C-F bond utilizing protonated sulfate (-HSO4) modified Al2O3@ZrO2 (S-Al2O3@ZrO2) catalyst, resulting in highly efficient CF4 decomposition. By combining in situ infrared spectroscopy tests and density function theory simulations, we demonstrate that the introduced -HSO4 proton donor has a stronger interaction on the C-F bond than the hydroxyl (-OH) proton donor, which can effectively stretch the C-F bond for its activation. Consequently, the obtained S-Al2O3@ZrO2 catalyst achieved a stable 100% CF4 decomposition at a record low temperature of 580 °C with a turnover frequency value of ~8.3 times higher than the Al2O3@ZrO2 catalyst without -HSO4 modification, outperforming the previously reported results. This work paves a new way for achieving efficient C-F bond activation to decompose CF4 at a low temperature.

9.
Chem Commun (Camb) ; 59(96): 14223-14235, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37962523

RESUMO

Nanoparticle (NP) superlattices are periodic arrays of nanoscale building blocks. Because of the collective effect between functional NPs, NP superlattices can exhibit exciting new properties that are distinct from those of individual NPs or corresponding bulk materials. In particular, two-dimensional (2D) NP superlattices have attracted increasing attention due to their emerging applications in micro/opto-electronics, catalysis, sensing, and other fields. Among various preparation methods, evaporation-induced interfacial self-assembly has become the most popular method for preparing 2D NP superlattices because it is a simple, low-cost, and scalable process that can be widely applied to various NPs. Introducing soft ligands, such as polymers, can not only provide convenience in controlling the self-assembly process and tuning superlattice structures but also improve the properties of 2D NP superlattices. This feature article focuses on the methods of evaporation-induced self-assembly of polymer-grafted Au NPs into free-standing 2D NP superlattice films at air/liquid interfaces and 2D NP superlattice coatings on substrates, followed by studies on in situ tracking of the self-assembly evolution process through small-angle X-ray scattering. Their application in nano-floating gate memory devices is also included. Finally, the challenges and perspectives of this direction are discussed.

10.
Front Genet ; 14: 1251999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745847

RESUMO

Objective: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the world, and its pathogenesis is not fully understood. Disulfidptosis is the most recently reported form of cell death and may be associated with NAFLD progression. Our study aimed to explore the molecular clusters associated with disulfidptosis in NAFLD and to construct a predictive model. Methods: First, we analyzed the expression profile of the disulfidptosis regulators and immune characteristics in NAFLD. Using 104 NAFLD samples, we investigated molecular clusters based on differentially expressed disulfidptosis-related genes, along with the related immune cell infiltration. Cluster-specific differentially expressed genes were then identified by using the WGCNA method. We also evaluated the performance of four machine learning models before choosing the optimal machine model for diagnosis. Nomogram, calibration curves, decision curve analysis, and external datasets were used to confirm the prediction effectiveness. Finally, the expression levels of the biomarkers were assessed in a mouse model of a high-fat diet. Results: Two differentially expressed DRGs were identified between healthy and NAFLD patients. We revealed the expression profile of DRGs in NAFLD and the correlation with 22 immune cells. In NAFLD, two clusters of molecules connected to disulfidptosis were defined. Significant immunological heterogeneity was shown by immune infiltration analysis among the various clusters. A significant amount of immunological infiltration was seen in Cluster 1. Functional analysis revealed that Cluster 1 differentially expressed genes were strongly linked to energy metabolism and immune control. The highest discriminatory performance was demonstrated by the SVM model, which had a higher area under the curve, relatively small residual and root mean square errors. Nomograms, calibration curves, and decision curve analyses were used to show how accurate the prediction of NAFLD was. Further analysis revealed that the expression of three model-related genes was significantly associated with the level of multiple immune cells. In animal experiments, the expression trends of DDO, FRK and TMEM19 were consistent with the results of bioinformatics analysis. Conclusion: This study systematically elucidated the complex relationship between disulfidptosis and NAFLD and developed a promising predictive model to assess the risk of disease in patients with disulfidptosis subtypes and NAFLD.

11.
Nano Lett ; 23(11): 5288-5296, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37234018

RESUMO

Inspired by transformation optics, we propose a new concept for plasmonic photocatalysis by creating a novel hybrid nanostructure with a plasmonic singularity. Our geometry enables broad and strong spectral light harvesting at the active site of a nearby semiconductor where the chemical reaction occurs. A proof-of-concept nanostructure comprising Cu2ZnSnS4 (CZTS) and Au-Au dimer (t-CZTS@Au-Au) is fabricated via a colloidal strategy combining templating and seeded growth. On the basis of numerical and experimental results of different related hybrid nanostructures, we show that both the sharpness of the singular feature and the relative position to the reactive site play a pivotal role in optimizing photocatalytic activity. Compared with bare CZTS, the hybrid nanostructure (t-CZTS@Au-Au) exhibits an enhancement of the photocatalytic hydrogen evolution rate by up to ∼9 times. The insights gained from this work might be beneficial for designing efficient composite plasmonic photocatalysts for diverse photocatalytic reactions.

12.
J Am Chem Soc ; 144(31): 14005-14011, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904545

RESUMO

The carbon-carbon (C-C) bond formation is essential for the electroconversion of CO2 into high-energy-density C2+ products, and the precise coupling pathways remain controversial. Although recent computational investigations have proposed that the OC-COH coupling pathway is more favorable in specific reaction conditions than the well-known CO dimerization pathway, the experimental evidence is still lacking, partly due to the separated catalyst design and mechanistic/spectroscopic exploration. Here, we employ density functional theory calculations to show that on low-coordinated copper sites, the *CO bindings are strengthened, and the adsorbed *CO coupling with their hydrogenation species, *COH, receives precedence over CO dimerization. Experimentally, we construct a fragmented Cu catalyst with abundant low-coordinated sites, exhibiting a 77.8% Faradaic efficiency for C2+ products at 300 mA cm-2. With a suite of in situ spectroscopic studies, we capture an *OCCOH intermediate on the fragmented Cu surfaces, providing direct evidence to support the OC-COH coupling pathway. The mechanistic insights of this research elucidate how to design materials in favor of OC-COH coupling toward efficient C2+ production from CO2 reduction.

13.
J Am Chem Soc ; 144(7): 3039-3049, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35112839

RESUMO

Electrochemical CO2 reduction is a promising way to mitigate CO2 emissions and close the anthropogenic carbon cycle. Among products from CO2RR, multicarbon chemicals, such as ethylene and ethanol with high energy density, are more valuable. However, the selectivity and reaction rate of C2 production are unsatisfactory due to the sluggish thermodynamics and kinetics of C-C coupling. The electric field and thermal field have been studied and utilized to promote catalytic reactions, as they can regulate the thermodynamic and kinetic barriers of reactions. Either raising the potential or heating the electrolyte can enhance C-C coupling, but these come at the cost of increasing side reactions, such as the hydrogen evolution reaction. Here, we present a generic strategy to enhance the local electric field and temperature simultaneously and dramatically improve the electric-thermal synergy desired in electrocatalysis. A conformal coating of ∼5 nm of polytetrafluoroethylene significantly improves the catalytic ability of copper nanoneedles (∼7-fold electric field and ∼40 K temperature enhancement at the tips compared with bare copper nanoneedles experimentally), resulting in an improved C2 Faradaic efficiency of over 86% at a partial current density of more than 250 mA cm-2 and a record-high C2 turnover frequency of 11.5 ± 0.3 s-1 Cu site-1. Combined with its low cost and scalability, the electric-thermal strategy for a state-of-the-art catalyst not only offers new insight into improving activity and selectivity of value-added C2 products as we demonstrated but also inspires advances in efficiency and/or selectivity of other valuable electro-/photocatalysis such as hydrogen evolution, nitrogen reduction, and hydrogen peroxide electrosynthesis.

14.
Phys Rev Lett ; 129(26): 267401, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608180

RESUMO

Skyrmions endowed with topological protection have been extensively investigated in various platforms including magnetics, ferroelectrics, and liquid crystals, stimulating applications such as memories, logic devices, and neuromorphic computing. While the optical counterpart has been proposed and realized recently, the study of optical skyrmions is still in its infancy. Among the unexplored questions, the investigation of the topology induced robustness against disorder is of substantial importance on both fundamental and practical sides but remains elusive. In this Letter, we manage to generate optical skyrmions numerically in real space with different topological features at will, providing a unique platform to investigate the robustness of various optical skyrmions. A disorder-induced topological state transition is observed for the first time in a family of optical skyrmions composed of six classes with different skyrmion numbers. Intriguingly, the optical skyrmions produced from a vectorial hologram are exceptionally robust against scattering from a random medium, shedding light on topological photonic devices for the generation and manipulation of robust states for applications including imaging and communication.

15.
Nanotechnology ; 33(4)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34666317

RESUMO

Hierarchical self-assembly of polymeric building blocks into high-level colloidosomes is desirable to not only design novel nanostructures but also fabricate the complex artificial materials across many length scales with multifunctionality. Although great progress has been made in the designing the hierarchical colloidosomes, the fabrication of polymeric colloidosomes self-assembled from block copolymer (BCP) colloidal nanoparticles still remains challenge. Here, we report the fabrication of the hierarchical polymeric colloidosomes with typical hollow internal structures self-assembled from the polystyrene-block-poly (2-vinyl pyridine) (PS-b-P2VP) BCP spherical micelles through the emulsion interfacial confinement, which is constructed through the water-in-1-butanol emulsion system. Moreover, the hierarchical colloidosomes can disassemble into the original uniform spherical micelles under the acid aqueous solution, indicating that the colloidosomes possess good pH stimuli-responsibility. Finally, the stability of the colloidosomes can be greatly improved by cross-linking the P2VP corona of original spherical micelles, offering the effective templates for construction of the multifunctional materials. This finding provides a simple yet effective method for the fabrication of the hierarchical colloidosomes from the BCP building blocks.

16.
Light Sci Appl ; 10(1): 180, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489399

RESUMO

While total internal reflection (TIR) lays the foundation for many important applications, foremost fibre optics that revolutionised information technologies, it is undesirable in some other applications such as light-emitting diodes (LEDs), which are a backbone for energy-efficient light sources. In the case of LEDs, TIR prevents photons from escaping the constituent high-index materials. Advances in material science have led to good efficiencies in generating photons from electron-hole pairs, making light extraction the bottleneck of the overall efficiency of LEDs. In recent years, the extraction efficiency has been improved, using nanostructures at the semiconductor/air interface that outcouple trapped photons to the outside continuum. However, the design of geometrical features for light extraction with sizes comparable to or smaller than the optical wavelength always requires sophisticated and time-consuming fabrication, which causes a gap between lab demonstration and industrial-level applications. Inspired by lightning bugs, we propose and realise a disordered metasurface for light extraction throughout the visible spectrum, achieved with single-step fabrication. By applying such a cost-effective light extraction layer, we improve the external quantum efficiency by a factor of 1.65 for commercialised GaN LEDs, demonstrating a substantial potential for global energy-saving and sustainability.

17.
ACS Nano ; 15(6): 10553-10564, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34114794

RESUMO

Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.

18.
Adv Mater ; 33(23): e2007623, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33929067

RESUMO

Materials show various responses to incident light, owing to their unique dielectric functions. A well-known example is the distinct colors displayed by metals, providing probably the simplest method to identify gold, silver, and bronze since ancient times. With the advancement of nanotechnology, optical structures with feature sizes smaller than the optical wavelength have been routinely achieved. In this regime, the optical response is also determined by the geometry of the nanostructures, inspiring flourishing progress in plasmonics, photonic crystals, and metamaterials. Nevertheless, the nature of the materials still plays a decisive role in light-matter interactions, and this material-dependent optical response is widely accepted as a norm in nanophotonics. Here, a counterintuitive system-plasmonic nanostructures composed of different materials but exhibiting almost identical reflection-is proposed and realized. The geometric disorder embedded in the system overwhelms the contribution of the material properties to the electrodynamics. Both numerical simulations and experimental results provide concrete evidence of the insensitivity of the optical response to different plasmonic materials. The same optical response is preserved with various materials, providing great flexibility of freedom in material selection. As a result, the proposed configuration may shed light on novel applications ranging from Raman spectroscopy, photocatalysis, to nonlinear optics.

19.
Cancer Biol Med ; 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33710816

RESUMO

OBJECTIVE: The immunoscore, which is used to quantify immune infiltrates, has greater relative prognostic value than tumor, node, and metastasis (TNM) stage and might serve as a new system for classification of colorectal cancer. However, a comparable immunoscore for predicting lung adenocarcinoma (LUAD) prognosis is currently lacking. METHODS: We analyzed the expression of 18 immune features by immunohistochemistry in 171 specimens. The relationship of immune marker expression and clinicopathologic factors to the overall survival (OS) was analyzed with the Kaplan-Meier method. A nomogram was developed by using the optimal features selected by least absolute shrinkage and selection operator (LASSO) regression in the training cohort (n = 111) and evaluated in the validation cohort (n = 60). RESULTS: The indicators integrated in the nomogram were TNM stage, neuron-specific enolase, carcino-embryonic antigen, CD8center of tumor (CT), CD8invasive margin (IM), FoxP3CT, and CD45ROCT. The calibration curve showed prominent agreement between the observed 2- and 5-year OS and that predicted by the nomogram. To simplify the nomogram, we developed a new immune-serum scoring system (I-SSS) based on the points awarded for each factor in the nomogram. Our I-SSS was able to stratify same-stage patients into different risk subgroups. The combination of I-SSS and TNM stage had better prognostic value than the TNM stage alone. CONCLUSIONS: Our new I-SSS can accurately and individually predict LUAD prognosis and may be used to supplement prognostication based on the TNM stage.

20.
Virchows Arch ; 478(3): 449-458, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32918598

RESUMO

To examine the clinicopathologic and immunohistochemical features of a group of newly defined low-grade oncocytic renal tumors (LOT) that have the "CD117 negative/cytokeratin (CK)7 positive" immunoprofile. We have queried our hospital database and found 4456 consecutive renal tumors between 2016 and 2019. Among these renal tumors, eight (8) cases meet the morphologic and immunohistochemical characterization for low-grade oncocytic renal tumor (LOT). The eight (8) patients' mean age is 56.6 years (range 39-70 years old), and the male to female ratio is 1:1. Macroscopically, these LOTs generally present with tan-brown and solid cut surfaces and demonstrate similar solid, compact nested growth pattern microscopically. Tumor cells exhibit oncocytic cytoplasm and uniformly rounded to oval nuclei. There are areas of edematous stroma containing dispersed single or small clustered tumor cells. All tumors are negative for CD117 and positive for CK7. Uniform reactivity is also found for BerEP4, cyclin D1, and SDHB. Besides, CD10, vimentin, and AMACR are either negative or only focally positive. All of the tumors are negative for CA9 and TFE. The Ki-67 index is less than 5% in the seven (7) internal cases. Seven (7) of the eight (8) patients who are available for follow-up are alive and without disease recurrence (mean follow-up period of 21.6 months, ranging from 6 to 43 months). We described a group of low-grade oncocytic renal tumors identified retrospectively in a large tertiary cancer center, which was probably the first report originated from China or even Asia in the English literature so far. These tumors demonstrated eosinophilic cytoplasm and low-grade appearing nuclei with a "CD117 negative/CK7 positive" immunoprofile. The incidence rate was about 3.7% of the oncocytic renal tumors and 0.18% of all the renal tumors that were received in our lab during the four-year period. It is necessary to separate this group of tumors by its characteristic morphologic and immunophenotypic features.


Assuntos
Adenoma Oxífilo/química , Biomarcadores Tumorais/análise , Queratina-7/análise , Neoplasias Renais/química , Proteínas Proto-Oncogênicas c-kit/análise , Adenoma Oxífilo/patologia , Adenoma Oxífilo/cirurgia , Adulto , Idoso , China , Bases de Dados Factuais , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Estudos Retrospectivos , Centros de Atenção Terciária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...