Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hematol Oncol ; 17(1): 31, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720342

RESUMO

Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.


Assuntos
Neoplasias Encefálicas , Células Supressoras Mieloides , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Células Supressoras Mieloides/imunologia , Glioma/imunologia , Glioma/terapia , Glioma/patologia , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Animais , Imunoterapia/métodos , Linfócitos T Reguladores/imunologia
2.
MedComm (2020) ; 4(6): e458, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116063

RESUMO

Human gliomas are lethal brain cancers. Emerging evidence revealed the regulatory role of long noncoding RNAs (lncRNAs) in tumors. Here, we performed a comprehensive analysis of the expression profiles of RNAs in histologically lower-grade glioma (LGG). Enrichment analysis revealed that glioma is influenced by immune-related signatures. Survival analysis further established the close correlation between network features and glioma prognosis. Subsequent experiments showed lncRNA RP11-770J1.4 regulates CTXN1 expression through hsa-miR-124-3p. Correlation analysis identified lncRNA RP11-770J1.4 was immune related, specifically involved in the cytosolic DNA sensing pathway. Downregulated lncRNA RP11-770J1.4 resulted in increased spontaneous gene expression of the cGAS-STING pathway. Single-cell RNA sequencing analysis, along with investigations in a glioblastoma stem cell model and patient sample analysis, demonstrated the predominant localization of CTXN1 within tumor cores rather than peripheral regions. Immunohistochemistry staining established a negative correlation between CTXN1 expression and infiltration of CD8+ T cells. In vivo, Ctxn1 knockdown in GL261 cells led to decreased tumor burden and improved survival while increasing infiltration of CD8+ T cells. These findings unveil novel insights into the lncRNA RP11-770J1.4-CTXN1 as a potential immune regulatory axis, highlighting its therapeutic implications for histologically LGGs.

3.
Acta Biochim Biophys Sin (Shanghai) ; 51(1): 1-8, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496406

RESUMO

Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression. Wet AMD, which is characterized by angiogenesis on the choroidal membrane, is uncommonly seen but more severe. Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD. Emerging evidence has shown that transforming growth factor-ß (TGF-ß) signaling plays a significant role in the progression of wet AMD. In this review, we described the roles of and changes in TGF-ß signaling in the development of AMD and discussed the mechanisms of the TGF-ß superfamily in choroidal neovascularization (CNV) and wet AMD, including the modulation of angiogenesis-related factors, inflammation, vascular fibrosis, and immune responses, as well as cross-talk with other signaling pathways. These remarkable findings indicate that TGF-ß signaling is a potential target for wet AMD treatment.


Assuntos
Neovascularização de Coroide/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Degeneração Macular Exsudativa/metabolismo , Inibidores da Angiogênese/uso terapêutico , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/fisiopatologia , Citocinas/metabolismo , Progressão da Doença , Humanos , Mediadores da Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/antagonistas & inibidores , Degeneração Macular Exsudativa/tratamento farmacológico , Degeneração Macular Exsudativa/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...