Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; 63(1): e202316393, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37986261

RESUMO

We report in this paper a Pd(II)-catalyzed migratory gem-fluorolactonization of ene-carboxylic acids. Reaction of 4-methylenealkanoic acid derivatives with Selectfluor in the presence of Pd(OAc)2 (1.0 mol %) at room temperature affords fluorolactones in good to excellent yields. 2-(2-Methylenecycloalkanyl)acetic acids are transformed to bridged fluorolactones under identical conditions. One C-C, one C-O and one tertiary C-F bond were generated along the gem-disubstituted carbon-carbon double bond in this operationally simple transformation. Trapping experiments indicates that the reaction is initiated by a 5-exo-trig oxypalladation followed by Pd oxidation, regioselective ring-enlarging 1,2-alkyl/Pd(IV) dyotropic rearrangement and C-F bond forming reductive elimination cascade. Post-transformations of these fluorolactones taking advantage of the electrophilicity of the 1-fluoroalkylcarboxylate function are also documented.

2.
ACS Cent Sci ; 9(11): 2036-2043, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38033798

RESUMO

As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.

3.
Chem Rev ; 123(16): 10079-10134, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37527349

RESUMO

This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.

4.
Angew Chem Int Ed Engl ; 62(37): e202305067, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37140049

RESUMO

Enantioselective synthesis of N-N biaryl atropisomers is an emerging area but remains underexplored. The development of efficient synthesis of N-N biaryl atropisomers is in great demand. Herein, the construction of N-N biaryl atropisomers through iridium-catalyzed asymmetric C-H alkylation is reported for the first time. In the presence of readily available Ir precursor and Xyl-BINAP, a variety of axially chiral molecules based on indole-pyrrole skeleton were obtained in good yields (up to 98 %) with excellent enantioselectivity (up to 99 % ee). In addition, N-N bispyrrole atropisomers could also be synthesized in excellent yields and enantioselectivity. This method features perfect atom economy, wide substrate scope, and multifunctionalized products allowing diverse transformations.

5.
Huan Jing Ke Xue ; 44(3): 1537-1541, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922214

RESUMO

To study the distribution characteristics and horizontal transfer potential of antibiotic resistance genes in biofilms of water supply pipes made of different materials, the biofilms of 304 and 316 L stainless steel pipes and PPR and PE plastic pipes were analyzed using metagenomic sequencing. The results showed that a total of 146 antibiotic resistance genes belonging to 17 classes were detected in the biofilms. Multidrug resistance genes had the highest abundance and varied a lot in different biofilms, which was the main reason for the differences in antibiotic resistance genes in different biofilms. The total abundance of mobile genetic elements was high in different biofilms, but overall coexistence with antibiotic resistance genes was low, with integrase genes showing a closer relationship with antibiotic resistance genes and possibly playing an important role in the horizontal transfer of antibiotic resistance genes. Different antibiotic resistance genes possessed different genera of potential hosts; highly abundant hosts such as Aquabacterium and Bradyrhizobium were the basis for the presence of a high abundance of multidrug resistance genes. Microbial attachment in different pipe walls was selective, and the primary influence of antibiotic resistance in biofilms was bacterial community composition, followed by the horizontal transfer of genes mediated by mobile genetic elements, community composition, and mobile genetic elements together shaping the distribution characteristics of antibiotic resistance genes.


Assuntos
Antibacterianos , Água Potável , Antibacterianos/farmacologia , Abastecimento de Água , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Biofilmes , Genes Bacterianos , Água Potável/microbiologia
6.
J Am Chem Soc ; 145(8): 4765-4773, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787487

RESUMO

Mechanism-guided reaction development is a well-appreciated research paradigm in chemistry since the merging of mechanistic knowledge would accelerate the discovery of new synthetic methods. Low-valent transition metals such as Pd(0)- and Rh(I)-catalyzed C-H arylation with aryl (pseudo)halides is among the enabling reactions for the exclusive cross-coupling of two different aryl partners. However, different from the situation of Pd(0)-catalysis, the mechanism of Rh(I)-catalyzed C-H arylation is underexplored. The sequence of the elementary steps of aryl C-H activation and oxidative addition of aryl (pseudo)halides remains unclear. Herein, we report comprehensive experimental and computational studies toward explicit mechanistic understandings of Rh(I)-catalyzed intermolecular asymmetric C-H arylation between 2-pyridinylferrocenes and aryl bromides. The identification of each elementary step in the catalytic cycle and the structural characterization of the key intermediates and transition states allow the rational design and development of challenging intramolecular reactions. The successful realization of this reaction mode set the foundation for the facile synthesis of planar chiral [m]ferrocenophanes (m = 6-8), a class of rarely explored target molecules with strained structures and intriguing molecular topology.

7.
J Ethnopharmacol ; 303: 116053, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529247

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis is a potentially harmful chronic liver disease caused by various etiologies. There is currently no specific drug for liver fibrosis. Xiaochaihu Tang (XCHT) is a traditional formula combined of seven herbs, which was first recorded in the Treatise on Febrile Diseases in Han Dynasty of ancient China. It is widely used in clinic to hepatic protection, analgesic, antipyretic and anti-inflammatory treatment. And it has been recommended for treating chronic hepatitis and chronic cholecystitis in the latest guidelines for the diagnosis and treatment of liver fibrosis with integrated traditional and western medicine. However, the underlying regulatory mechanisms remain elusive. AIM OF THE STUDY: This study aims to explore the therapeutic effects of XCHT on liver fibrosis and its underlying molecular mechanisms from the perspective of network pharmacology and experimental research. MATERIALS AND METHODS: Carbon tetrachloride (CCl4) induced and bile duct ligation (BDL) induced liver fibrosis models in mice were established to evaluate the anti-fibrosis effects of XCHT in vivo. Potential anti-fibrosis targets of XCHT were screened via network establishment. The underlying mechanisms were uncovered through GO and pathway enrichment analysis. Then, the core targets were identified from protein-protein interaction network by means of the Cytohubba plug-in of Cytoscape. Furthermore, two effective monomer components of XCHT were recognized by molecular docking. Moreover, the predicted components and pathways were verified by in vitro experiments. RESULTS: When treated with XCHT, liver fibrosis was alleviated in both mice models, showing as the improvement of liver function, the protection of hepatocytes, the inhibition of HSC activation and the reduction of hepatic collagen accumulation. 540 monomer components, 300 therapeutic targets, 109 signaling pathways, 246 GO biological processes, 77 GO cellular components, 107 GO molecular functions items and core targets were identified by network analysis. Then, 6-gingerol and baicalein were identified as the core components of anti-fibrosis effects of XCHT via leptin or Nrf2 signaling pathway. Furthermore, the experiment in vitro also validated the results. CONCLUSIONS: Our study suggests XCHT could alleviate liver fibrosis through multi-targets and multi-pathways; 6-gingerol and baicalein are its core components which may play an important role via leptin or Nrf2 signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Leptina , Animais , Camundongos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fator 2 Relacionado a NF-E2 , Cirrose Hepática/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
8.
Hortic Res ; 9: uhac163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204210

RESUMO

The heat shock transcription factors (Hsfs) play critical roles in plant responses to abiotic stresses. However, the mechanism of Hsfs in the regulation of pollen thermotolerance and their specific biological functions and signaling remain unclear. Herein, we demonstrate that HsfA1a played a key role in tomato pollen thermotolerance. Pollen thermotolerance was reduced in hsfA1a mutants but was increased by hsfA1a overexpression, based on pollen viability and germination. Analyzing the whole transcriptome by RNA-seq data, we found that HsfA1a mainly regulated the genes involved in oxidative stress protection, protein homeostasis regulation and protein modification, as well as the response to biological stress in anthers under heat stress. The accumulation of reactive oxygen species in anthers was enhanced in hsfA1a mutants but decreased in HsfA1a-overexpressing lines. Furthermore, HsfA1a bound to the promoter region of genes involved in redox regulation (Cu/Zn-SOD, GST8, and MDAR1), protein repair (HSP17.6A, HSP70-2, HSP90-2, and HSP101) and degradation (UBP5, UBP18, RPN10a, and ATG10) and regulated the expression of these genes in tomato anthers under heat stress. Our findings suggest that HsfA1a maintains pollen thermotolerance and cellular homeostasis by enhancing antioxidant capacity and protein repair and degradation, ultimately improving pollen viability and fertility.

9.
Org Lett ; 24(20): 3620-3625, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35575309

RESUMO

The Rh(III)-catalyzed highly enantioselective C2-arylation of indole derivatives with 1-diazonaphthoquinones is reported. In the presence of 2.5 mol % SCpRh complex and 20 mol % AgNO3, the C2-arylation reactions of indoles proceeded smoothly, affording a wide range of C2-arylated indole atropisomers in good yields and enantioselectivity (≤96% yield, ≤97% ee) under mild conditions. The method displays a broad substrate scope and good functional group tolerance.

10.
Free Radic Biol Med ; 184: 74-88, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398494

RESUMO

With the increasing morbidity and mortality, intestinal ischemia/reperfusion injury (IIRI) has attracted more and more attention, but there is no efficient therapeutics at present. Apigenin-7-O-ß-D-(-6″-p-coumaroyl)-glucopyranoside (APG) is a new flavonoid glycoside isolated from Clematis tangutica that has strong antioxidant abilities in previous studies. However, the pharmacodynamic function and mechanism of APG on IIRI remain unknown. This study aimed to investigate the effects of APG on IIRI both in vivo and in vitro and identify the potential molecular mechanism. We found that APG could significantly improve intestinal edema and increase Chiu's score. MST analysis suggested that APG could specifically bind to heme oxygenase 1 (HO-1) and monoamine oxidase b (MAO-B). Simultaneously, APG could attenuate ROS generation and Fe2+ accumulation, maintain mitochondria function thus inhibit ferroptosis with a dose-dependent manner. Moreover, we used siRNA silencing technology to confirm that knocking down both HO-1 and MAO-B had a positive effect on intestine. In addition, we found the HO-1 and MAO-B inhibitors also could reduce endothelial cell loss and protect vascular endothelial after reperfusion. We demonstrate that APG plays a protective role on decreasing activation of HO-1 and MAO-B, attenuating IIRI-induced ROS generation and Fe2+ accumulation, maintaining mitochondria function thus inhibiting ferroptosis.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Apigenina/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Intestinos , Monoaminoxidase , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
11.
Antioxidants (Basel) ; 11(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35326106

RESUMO

Heavy metal cadmium (Cd) at high concentrations severely disturbs plant growth and development. The E3 ubiquitin ligase involved in protein degradation is critical for plant tolerance to abiotic stress, but the role of E3 ubiquitin ligases in Cd tolerance is largely unknown in tomato. Here, we characterized an E3 ubiquitin ligase gene Sl1, which was highly expressed in roots under Cd stress in our previous study. The subcellular localization of Sl1 revealed that it was located in plasma membranes. In vitro ubiquitination assays confirmed that Sl1 had E3 ubiquitin ligase activity. Knockout of the Sl1 gene by CRISPR/Cas9 genome editing technology reduced while its overexpression increased Cd tolerance as reflected by the changes in the actual quantum efficiency of PSII photochemistry (ΦPSII) and hydrogen peroxide (H2O2) accumulation. Cd-induced increased activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were compromised in sl1 mutants but were enhanced in Sl1 overexpressing lines. Furthermore, the content of Cd in both shoots and roots increased in sl1 mutants while reduced in Sl1 overexpressing plants. Gene expression assays revealed that Sl1 regulated the transcript levels of heavy metal transport-related genes to inhibit Cd accumulation. These findings demonstrate that Sl1 plays a critical role in regulating Cd tolerance by relieving oxidative stress and resisting heavy metal transportation in tomato. The study provides a new understanding of the mechanism of plant tolerance to heavy metal stress.

12.
Org Lett ; 24(2): 564-569, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34985290

RESUMO

A rhodium-catalyzed asymmetric oxidative C-H/C-H cross-coupling reaction between 1-aryl isoquinolines and indolizines is disclosed. With a matched pair of SCpRh complex and chiral carboxylic acid, enantioselective two-fold C-H/C-H cross-coupling reactions between 1-aryl isoquinolines and indolizines provide a variety of axially chiral bi(hetero)aryls in excellent yields and enantioselectivity (up to 96% yield and 98% ee). Mechanistic studies suggest that both C-H cleavages are likely reversible.

13.
J Am Chem Soc ; 143(35): 14025-14040, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432467

RESUMO

Transition-metal-catalyzed enantioselective C-H functionalization has become a powerful strategy for the formation of C-C or C-X bonds, enabling the highly asymmetric synthesis of a wide range of enantioenriched compounds. Atropisomers are widely found in natural products and pharmaceutically relevant molecules, and have also found applications as privileged frameworks for chiral ligands and catalysts. Thus, research into asymmetric routes for the synthesis of atropisomers has garnered great interest in recent years. In this regard, transition-metal-catalyzed enantioselective C-H functionalization has emerged as an atom-economic and efficient strategy toward their synthesis. In this Perspective, the approaches for the synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions are summarized. The main focus here is on asymmetric catalysis via Pd, Rh, and Ir complexes, which have been the most frequently utilized catalysts among reported enantioselective C-H functionalization reactions. Finally, we discuss limitations on available protocols and give an outlook on possible future avenues of research.

14.
Sci Bull (Beijing) ; 66(3): 210-213, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654324
15.
Sci Rep ; 10(1): 752, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31937895

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Front Plant Sci ; 11: 618944, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33664753

RESUMO

Autophagy is a highly conserved cellular process for the degradation and recycling of unnecessary cytoplasmic components in eukaryotes. Various studies have shown that autophagy plays a crucial role in plant growth, productivity, and survival. The extensive functions of plant autophagy have been revealed in numerous frontier studies, particularly those regarding growth adjustment, stress tolerance, the identification of related genes, and the involvement of metabolic pathways. However, elucidation of the molecular regulation of plant autophagy, particularly the upstream signaling elements, is still lagging. In this review, we summarize recent progress in research on the molecular mechanisms of autophagy regulation, including the roles of protein kinases, phytohormones, second messengers, and transcriptional and epigenetic control, as well as the relationship between autophagy and the 26S proteasome in model plants and crop species. We also discuss future research directions for the potential application of autophagy in agriculture.

17.
Neural Regen Res ; 15(3): 528-536, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571665

RESUMO

Ferroptosis is a type of programmed cell death dependent on iron. It is different from other forms of cell death such as apoptosis, classic necrosis and autophagy. Ferroptosis is involved in many neurodegenerative diseases. The role of ferroptosis in glutamate-induced neuronal toxicity is not fully understood. To test its toxicity, glutamate (1.25-20 mM) was applied to HT-22 cells for 12 to 48 hours. The optimal experimental conditions occurred at 12 hours after incubation with 5 mM glutamate. Cells were cultured with 3-12 µM ferrostatin-1, an inhibitor of ferroptosis, for 12 hours before exposure to glutamate. The cell viability was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Autophagy was determined by monodansylcadaverine staining and apoptosis by caspase 3 activity. Damage to cell structures was observed under light and by transmission electron microscopy. The release of lactate dehydrogenase was detected by the commercial kit. Reactive oxygen species were measured by flow cytometry. Glutathione peroxidase activity, superoxide dismutase activity and malondialdehyde level were detected by the appropriate commercial kit. Prostaglandin peroxidase synthase 2 and glutathione peroxidase 4 gene expression was detected by real-time quantitative polymerase chain reaction. Glutathione peroxidase 4 and nuclear factor erythroid-derived-like 2 protein expression was detected by western blot analysis. Results showed that ferrostatin-1 can significantly counter the effects of glutamate on HT-22 cells, improving the survival rate, reducing the release of lactate dehydrogenase and reducing the damage to mitochondrial ultrastructure. However, it did not affect the caspase-3 expression and monodansylcadaverine-positive staining in glutamate-injured HT-22 cells. Ferrostatin-1 reduced the levels of reactive oxygen species and malondialdehyde and enhanced superoxide dismutase activity. It decreased gene expression of prostaglandin peroxidase synthase 2 and increased gene expression of glutathione peroxidase 4 and protein expressions of glutathione peroxidase 4 and nuclear factor (erythroid-derived)-like 2 in glutamate-injured HT-22 cells. Treatment of cultured cells with the apoptosis inhibitor Z-Val-Ala-Asp (OMe)-fluoromethyl ketone (2-8 µM), autophagy inhibitor 3-methyladenine (100-400 µM) or necrosis inhibitor necrostatin-1 (10-40 µM) had no effect on glutamate induced cell damage. However, the iron chelator deferoxamine mesylate salt inhibited glutamate induced cell death. Thus, the results suggested that ferroptosis is caused by glutamate-induced toxicity and that ferrostatin-1 protects HT-22 cells from glutamate-induced oxidative toxicity by inhibiting the oxidative stress.

18.
Sci Rep ; 9(1): 15322, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653907

RESUMO

In this paper, deep back propagation neural networks (DBP-NNs) and radial basis function neural networks (RBF-NNs) are employed to predict the dispersion relations (DRs) of one-dimensional (1D) phononic crystals (PCs). The data sets generated by transfer matrix method (TMM) are used to train the NNs and detect their prediction accuracy. In our work, filling fractions, mass density ratios and shear modulus ratios of PCs are considered as the input values of NNs. The results show that both the DBP-NNs and the RBF-NNs exhibit good performances in predicting the DRs of PCs. For one-parameter prediction, the RBF-NNs have shorter training time and remarkable prediction accuracy, for two- and three-parameter prediction, the DBP-NNs have more stable performance. The present work confirms the feasibility of predicting the DRs of PCs by NNs, and provides a useful reference for the application of NNs in the design of PCs and metamaterials.

19.
Nat Commun ; 10(1): 4168, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519893

RESUMO

Planar chiral ferrocenes have received great attention in both academia and industry. Although remarkable progresses have been made over the past decade, the development of efficient and straightforward methods for the synthesis of enantiopure  planar chiral  ferrocenes remains highly challenging. Herein, we report a rhodium(I)/phosphonite catalyzed thioketone-directed enantioselective C-H bond arylation of ferrocenes. Readily available aryl iodides are used as the coupling partners in this transformation, leading to a series of planar chiral ferrocenes in good yields and excellent enantioselectivities (up to 86% yield, 99% ee). Of particular note, heteroaryl coupled ferrocenes, which are difficult to access with previous approaches, can be obtained in satisfactory results.

20.
J Am Chem Soc ; 141(24): 9504-9510, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31184139

RESUMO

Rhodium(I)-catalyzed atroposelective C-H arylation of heterobiaryls was presented. In the presence of a Rh catalyst derived from [Rh(C2H4)2Cl]2 and a TADDOL-derived monodentate phosphonite, with 2-pyridine, 2-isoquinoline and their analogs as directing groups, a series of axially chiral heterobiaryls were obtained in excellent yields and enantioselectivities (up to 99% yield, 97% ee) via C-H direct functionalization reaction. The products obtained from this method provide a platform for the synthesis of axially chiral biaryl ligands and catalysts. As a demonstration, a chiral N-oxide synthesized from the product in one step could act as an efficient catalyst for asymmetric allylation of benzaldehyde with allyltrichlorosilane, leading to homoallyl alcohol with excellent enantiocontrol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...