Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 95(1): 71-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25772736

RESUMO

Previous studies have reported that aspirin significantly reduced the first-pass metabolism (FPM) of ethanol in humans thereby increasing adverse effects of alcohol. The underlying causes, however, remain poorly understood. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition profiles by aspirin and its major metabolite salicylate of ethanol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and acetaldehyde oxidation by ALDH1A1 and ALDH2, at pH 7.5 and 0.5 mM NAD(+). Competitive inhibition pattern was found to be a predominant type among the ADHs and ALDHs studied, although noncompetitive and uncompetitive inhibitions were also detected in a few cases. The inhibition constants of salicylate for the ADHs and ALDHs were considerably lower than that of aspirin with the exception of ADH1A that can be ascribed to a substitution of Ala-93 at the bottom of substrate pocket as revealed by molecular docking experiments. Kinetic inhibition equation-based simulations show at higher therapeutic levels of blood plasma salicylate (1.5 mM) that the decrease of activities at 2-10 mM ethanol for ADH1A/ADH2 and ADH1B2/ADH1B3 are predicted to be 75-86% and 31-52%, respectively, and that the activity decline for ALDH1A1 and ALDH2 at 10-50 µM acetaldehyde to be 62-73%. Our findings suggest that salicylate may substantially inhibit hepatic FPM of alcohol at both the ADH and ALDH steps when concurrent intaking aspirin.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/antagonistas & inibidores , Aspirina/farmacologia , Etanol/metabolismo , Salicilatos/farmacologia , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Humanos
2.
Chem Biol Interact ; 202(1-3): 275-82, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23220590

RESUMO

Previous studies have reported that cimetidine, an H2-receptor antagonist used to treat gastric and duodenal ulcers, can inhibit alcohol dehydrogenases (ADHs) and ethanol metabolism. Human alcohol dehydrogenases and aldehyde dehydrogenases (ALDHs), the principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition by cimetidine of alcohol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and aldehyde oxidation by ALDH1A1 and ALDH2 at pH 7.5 and a cytosolic NAD(+) concentration. Cimetidine acted as competitive or noncompetitive inhibitors for the ADH and ALDH isozymes/allozymes with near mM inhibition constants. The metabolic interactions between cimetidine and ethanol/acetaldehyde were assessed by computer simulation using the inhibition equations and the determined kinetic constants. At therapeutic drug levels (0.015 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 µM) in target tissues, cimetidine could weakly inhibit (<5%) the activities of ADH1B2 and ADH1B3 in liver, ADH2 in liver and small intestine, ADH4 in stomach, and ALDH1A1 in the three tissues, but not significantly affect ADH1A, ADH1B1, ADH1C1/2, or ALDH2. At higher drug levels, which may accumulate in cells (0.2 mM), the activities of the weakly-inhibited enzymes may be decreased more significantly. The quantitative effects of cimetidine on metabolism of ethanol and other physiological substrates of ADHs need further investigation.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/metabolismo , Aldeído Desidrogenase/antagonistas & inibidores , Aldeído Desidrogenase/metabolismo , Cimetidina/farmacologia , Etanol/metabolismo , Acetaldeído/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Inativação Metabólica , Intestino Delgado/enzimologia , Intestino Delgado/metabolismo , Isoenzimas/metabolismo , Cinética , Fígado/enzimologia , Fígado/metabolismo , NAD/metabolismo , Oxirredução , Estômago/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA