Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961386

RESUMO

In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion increases during fasting, and acts as a bona fide gut-to-brain homeostatic signal that attenuates neuronally induced fat loss during food shortage. INS-7 functions as an antagonist at the canonical DAF-2 receptor in the nervous system, and phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cell with enteroendocrine functions suggests that much remains to be learned about the intestine and its role in directing neuronal functions.

2.
Cell Rep ; 35(2): 108972, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852856

RESUMO

Disruption of sphingolipid homeostasis is known to cause neurological disorders, but the mechanisms by which specific sphingolipid species modulate pathogenesis remain unclear. The last step of de novo sphingolipid synthesis is the conversion of dihydroceramide to ceramide by dihydroceramide desaturase (human DEGS1; Drosophila Ifc). Loss of ifc leads to dihydroceramide accumulation, oxidative stress, and photoreceptor degeneration, whereas human DEGS1 variants are associated with leukodystrophy and neuropathy. In this work, we demonstrate that DEGS1/ifc regulates Rac1 compartmentalization in neuronal cells and that dihydroceramide alters the association of active Rac1 with organelle-mimicking membranes. We further identify the Rac1-NADPH oxidase (NOX) complex as the major cause of reactive oxygen species (ROS) accumulation in ifc-knockout (ifc-KO) photoreceptors and in SH-SY5Y cells with the leukodystrophy-associated DEGS1H132R variant. Suppression of Rac1-NOX activity rescues degeneration of ifc-KO photoreceptors and ameliorates oxidative stress in DEGS1H132R-carrying cells. Therefore, we conclude that DEGS1/ifc deficiency causes dihydroceramide accumulation, resulting in Rac1 mislocalization and NOX-dependent neurodegeneration.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Ácidos Graxos Dessaturases/genética , Proteínas de Membrana/genética , NADPH Oxidases/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Linhagem Celular Tumoral , Ceramidas/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/metabolismo , Eletrorretinografia , Ácidos Graxos Dessaturases/antagonistas & inibidores , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/deficiência , NADPH Oxidases/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Mutação Puntual , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Elife ; 92020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33078707

RESUMO

The relationship between lipid metabolism and longevity remains unclear. Although fat oxidation is essential for weight loss, whether it remains beneficial when sustained for long periods, and the extent to which it may attenuate or augment lifespan remain important unanswered questions. Here, we develop an experimental handle in the Caenorhabditis elegans model system, in which we uncover the mechanisms that connect long-term fat oxidation with longevity. We find that sustained ß-oxidation via activation of the conserved triglyceride lipase ATGL-1, triggers a feedback transcriptional loop that involves the mito-nuclear transcription factor ATFS-1, and a previously unknown and highly conserved repressor of ATGL-1 called HLH-11/AP4. This feedback loop orchestrates the dual control of fat oxidation and lifespan, and shields the organism from life-shortening mitochondrial stress in the face of continuous fat oxidation. Thus, we uncover one mechanism by which fat oxidation can be sustained for long periods without deleterious effects on longevity.


Assuntos
Caenorhabditis elegans/fisiologia , Retroalimentação Fisiológica , Metabolismo dos Lipídeos/fisiologia , Longevidade/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Lipase/genética , Lipase/metabolismo , Oxirredução , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
PLoS Biol ; 17(12): e3000242, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31805041

RESUMO

The ability to coordinate behavioral responses with metabolic status is fundamental to the maintenance of energy homeostasis. In numerous species including Caenorhabditis elegans and mammals, neural serotonin signaling regulates a range of food-related behaviors. However, the mechanisms that integrate metabolic information with serotonergic circuits are poorly characterized. Here, we identify metabolic, molecular, and cellular components of a circuit that links peripheral metabolic state to serotonin-regulated behaviors in C. elegans. We find that blocking the entry of fatty acyl coenzyme As (CoAs) into peroxisomal ß-oxidation in the intestine blunts the effects of neural serotonin signaling on feeding and egg-laying behaviors. Comparative genomics and metabolomics revealed that interfering with intestinal peroxisomal ß-oxidation results in a modest global transcriptional change but significant changes to the metabolome, including a large number of changes in ascaroside and phospholipid species, some of which affect feeding behavior. We also identify body cavity neurons and an ether-a-go-go (EAG)-related potassium channel that functions in these neurons as key cellular components of the circuitry linking peripheral metabolic signals to regulation of neural serotonin signaling. These data raise the possibility that the effects of serotonin on satiety may have their origins in feedback, homeostatic metabolic responses from the periphery.


Assuntos
Acil Coenzima A/metabolismo , Comportamento Alimentar/fisiologia , Serotonina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Retroalimentação , Homeostase , Intestinos/fisiologia , Neurônios/metabolismo , Oxirredução , Peroxissomos/metabolismo , Transdução de Sinais
5.
Hum Mol Genet ; 26(20): 3909-3921, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29016849

RESUMO

Impaired clearance of amyloid-ß peptide (Aß) leads to abnormal extracellular accumulation of this neurotoxic protein that drives neurodegeneration in sporadic Alzheimer's disease (AD). Connective tissue growth factor (CTGF/CCN2) expression is elevated in plaque-surrounding astrocytes in AD patients. However, the role of CTGF in AD pathogenesis remains unclear. Here we characterized the neuroprotective activity of CTGF. We found that CTGF facilitated Aß uptake and subsequent degradation within primary glia and neuroblastoma cells. CTGF enhanced extracellular Aß degradation via membrane-bound matrix metalloproteinase-14 (MMP14) in glia and extracellular MMP13 in neurons. In the brain of a Drosophila AD model, glial-expression of CTGF reduced Aß deposits, improved locomotor function, and rescued memory deficits. Neuroprotective potential of CTGF against Aß42-induced photoreceptor degeneration was disrupted through silencing MMPs. Therefore, CTGF may represent a node for potential AD therapeutics as it intervenes in glia-neuron communication via specific MMPs to alleviate Aß neurotoxicity in the central nervous system.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Astrócitos/metabolismo , Encéfalo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Modelos Animais de Doenças , Drosophila , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Ratos
6.
EMBO Rep ; 18(7): 1150-1165, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28507162

RESUMO

Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc-KO photoreceptors, resulting in activity-dependent neurodegeneration. Lipid-containing Atg8/LC3-positive puncta accumulate in ifc-KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc-KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc-KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc-KO defects. Human dhCer desaturase rescues ifc-KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity-dependent degeneration caused by dhCer accumulation.


Assuntos
Autofagia , Ceramidas/metabolismo , Metabolismo dos Lipídeos , Animais , Apoptose , Linhagem Celular Tumoral , Ceramidas/análise , Drosophila , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Ácidos Graxos Dessaturases/genética , Técnicas de Inativação de Genes , Humanos , Luz/efeitos adversos , Lipólise , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Doenças Neurodegenerativas/prevenção & controle , Células Fotorreceptoras de Invertebrados/patologia , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...