Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autoimmunity ; 50(1): 42-51, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28166678

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease that reflects a failure to block the production of self-reactive antibodies, especially those that bind double-stranded DNA (dsDNA). Backcrossing the lupus-prone NZM2410 genome onto C57BL/6 led to the identification of three genomic intervals, termed sle1, sle2 and sle3, which are associated with lupus susceptibility. We previously generated a C57BL/6 strain congenic for an immunoglobulin DH locus (ΔD-iD) that enriches for arginine at dsDNA-binding positions. We individually introduced the ΔD-iD allele into the three sle strains to test whether one or more of these susceptibility loci could affect the developmental fate of B cells bearing arginine-enriched CDR-H3s, the CDR-H3 repertoire created by the DH and the prevalence of dsDNA-binding antibodies. We found that the combination of the ΔD-iD allele and the sle1 locus led to a decrease in mature, recirculating B cell numbers and an increase in marginal zone cell numbers while maintaining a highly charged CDR-H3 repertoire. ΔD-iD and sle2 had no effect on peripheral B cell numbers, but the CDR-H3 repertoire was partially normalized. ΔD-iD and sle3 led to an increase in marginal zone B cell numbers, with some normalization of hydrophobicity. Mice with ΔD-iD combined with either sle1 or sle3 had increased production of dsDNA-binding IgM and IgG by 12 months of age. These findings indicate that the peripheral CDR-H3 repertoire can be categorically manipulated by the effects of nonimmunoglobulin genes.


Assuntos
Anticorpos Antinucleares/imunologia , Linfócitos B/citologia , Linfócitos B/fisiologia , Diferenciação Celular/genética , Regiões Determinantes de Complementaridade/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Locos de Características Quantitativas , Alelos , Sequência de Aminoácidos , Animais , Formação de Anticorpos , Autoanticorpos/imunologia , Diferenciação Celular/imunologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
PLoS One ; 10(2): e0118171, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25706374

RESUMO

Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies.


Assuntos
Autoanticorpos/imunologia , Sequência Conservada/genética , DNA/genética , DNA/imunologia , Genes de Imunoglobulinas/genética , Imunoglobulina G/genética , Animais , Diversidade de Anticorpos/genética , Diversidade de Anticorpos/imunologia , Linfócitos B/imunologia , Evolução Biológica , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Sequência Conservada/imunologia , Genes de Imunoglobulinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fases de Leitura/genética , Fases de Leitura/imunologia , Recombinação V(D)J/genética , Recombinação V(D)J/imunologia
3.
Front Immunol ; 5: 96, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24678310

RESUMO

The vast initial diversity of the antibody repertoire is generated centrally by means of a complex series of V(D)J gene rearrangement events, variation in the site of gene segment joining, and TdT catalyzed N-region addition. Although the diversity is great, close inspection has revealed distinct and unique characteristics in the antibody repertoires expressed by different B cell developmental subsets. In order to illustrate our approach to repertoire analysis, we present an in-depth comparison of V(D)J gene usage, hydrophobicity, length, DH reading frame, and amino acid usage between heavy chain repertoires expressed by immature, transitional, mature, memory IgD(+), memory IgD(-), and plasmacytes isolated from the blood of a single individual. Our results support the view that in both human and mouse, the H chain repertoires expressed by individual, developmental B cell subsets appear to differ in sequence content. Sequencing of unsorted B cells from the blood is thus likely to yield an incomplete or compressed view of what is actually happening in the immune response of the individual. Our findings support the view that studies designed to correlate repertoire expression with diseases of immune function will likely require deep sequencing of B cells sorted by subset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...