Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(11): 5131-5142, 2021 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-34708952

RESUMO

In order to systematically study the transmission characteristics of seasonal and typical pollutants in Shijiazhuang, hourly data of ground-level pollutants(PM2.5, PM10, O3, NO2, SO2, and CO) from 46 state-and provincial-controlled stations, and meteorological(temperature, humidity, and wind speed) data from 17 counties in Shijiazhuang City from December 2018 to November 2019 was analyzed. The interpolation(IDW) and correlation analysis were applied to seasonal and temporal spatial patterns of pollutant concentration. The backward trajectories analysis was performed to explore the seasonal transmission pattern and potential source areas of pollution in Shijiazhuang by combining with the global data assimilation system(GDAS). The results indicate that the different seasons have characteristic pollutants, as follows:spring(PM10, 48.91%), summer(O3, 81.97%), autumn(PM10 and PM2.5, 47.54% and 32.79%), and winter(PM2.5, 74.44%), which are related to the variation of meteorological conditions. Furthermore, the PM10(spring) concentration correlated negatively with the wind speed, presenting a high distribution in the northwest and low in the southeast, with a southerly transmission direction(53.32%). Central and southern Hebei, central and northern Henan, and central Shanxi are the potential sources of pollution(WPCWTij ≥ 160 µg·m-3), impacting western Shandong and northwest Shanxi(WPSCFij ≥ 0.3) with PM10. Moreover, the O3(summer) concentration correlated positively with temperature, and negatively with humidity. The southeast-south(54.24%) is the source direction of the transmission, and the potential source of O3 pollution is an arc area with Shijiazhuang in the center and Cangzhou and Heze as the double wings. Lastly, the PM2.5(autumn and winter) concentration correlated positively with humidity, and the winter concentration shows an increasing gradient from west to east. The trajectories of PM2.5 clustered the source directions:autumn(northeast-southeast, 74.75%), winter(northwest, 55.47%); central and southern Hebei, central and western Shanxi and northern Henan are the concentrated sources of potential pollution(WPCWTij ≥ 180 µg·m-3).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Poluição Ambiental , Material Particulado/análise , Estações do Ano
2.
Huan Jing Ke Xue ; 42(6): 2679-2690, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032067

RESUMO

Ground-level O3, NO2, and meteorological (temperature, humidity, wind speed, precipitation, and sunshine duration) data from 18 counties in Shijiazhuang City from 2014 to 2017, and volatile organic compounds (VOCs) data for Summer 2017, were analyzed to explore the spatial patterns, evolution, influencing factors, and source apportionment of O3 and NO2 in Shijiazhuang City. Network analysis and inverse distance weighted (IDW) spatial autocorrelation and backward trajectories analyses were performed. The results indicate that O3 concentrations increased between 2014 and 2017, and monthly variations showed a unimodal trend. The typical period of peak O3 pollution (O3 ≥ 160 µg·m-3) was from May to September, characterized by high temperatures, low humidity, weak winds, and strong solar radiation. The O3 concentrations were negatively correlated with the NO2. Furthermore, O3 concentrations increased year-on-year since 2015 in main urban area, and the dominant pollutant type had changed from NO2 (2014 to 2016) to VOCs (2016 and 2017). However, the O3 concentration of county-areas limited by the VOCs. The main factors affecting O3 concentrations were industry, agriculture, economy, and population, and centers of O3 pollution associated with secondary industry appeared in the main urban areas of Shijiazhuang and Luancheng. Moreover, VOCs trajectories during the summer monitoring period were clustered in three source directions:(A) East-northeast, 26.67%; (B) Northwest-west, 43.33%; and (C) Southeast-south, 30%). Trajectories (A) and (C) were the dominant directions of VOC transmission (east-southeast).

3.
Huan Jing Ke Xue ; 41(12): 5325-5335, 2020 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-33374048

RESUMO

To study the composition characteristics and sources of volatile organic compounds (VOCs) in Shijiazhuang City, three national control points were selected to conduct VOCs sampling and analysis from March 2017 to January 2018. The correlation of VOCs through combination with meteorological and ground-level O3 data, and the sources of VOCs were analyzed by positive matrix factorization (PMF). To quantify the pollution period of O3 in summer, its temporal sequence characteristics were studied by wavelet analysis. During the sampling period, the average concentration of ambient total VOCs (TVOCs) was (137.23±64.62) µg·m-3. Haloalkanes were the most dominant VOC compounds, accounting for 31.77% of total VOCs mass, followed by aromatic (30.97%) and oxygenated VOCs (OVOCs, 23.76%). The seasonal variation in VOC concentration followed the trend in winter (187.7 µg·m-3) > autumn (146.8 µg·m-3) > spring (133.24 µg·m-3) > summer (107.1 µg·m-3); the concentration of VOCs shows a trend of increasing gradient from west to east. The O3 concentration correlated negatively with VOCs and NO2, and positively with temperature, sunshine duration, wind speed, and visibility. Changes in meteorological elements were concerned before the occurrence of ozone pollution in summer, especially in 4-5 days in June and 7-8 days during July to August after the occurrence of increasing temperature. Finally six potential sources of VOCs were quantified by the PMF model, including from gasoline emissions (24.78%), diesel vehicle emissions (24.69%), solvent usage (18.64%), the chemical industry (11.87%), regional background (10.84%), and the pharmaceutical industry (9.17%). Ozone formation potential (OFP) contribution of emission sources of gasoline and diesel vehicles (54.98%) was over half of the total contribution. Meanwhile, these findings illustrated that control of vehicle emissions and industrial sources would be an important way to reduce VOCs concentrations and improve air quality in Shijiazhuang.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...