Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(22): 18748-18757, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28485578

RESUMO

While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 µm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 µm.

2.
J Am Chem Soc ; 138(1): 231-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26636348

RESUMO

Herein we report a direct measurement of Li transport in real-time during charge and discharge process within an Al matrix using neutron depth profiling (NDP). In situ NDP was used to reveal and quantify parasitic losses during the first 25 mAhr/g of lithiation, followed by the formation of LiAl protrusions from the surface of pristine Al. Evidence of Li entrapment is also reported during delithiation. Subsequent lithiation and delithiation showed electrochemical charge passed to be equivalent to the amount of lithium incorporated into the Al matrix with negligible difference, suggesting that the parasitic losses including the formation of the solid electrolyte layer may be confined to the first lithiation. Parallel in situ XRD measurements also confirm the transformation of ß-LiAl from a solid solution of α-LiAl, revealing solid solution-mediated crystallization of ß-LiAl.

3.
Angew Chem Int Ed Engl ; 53(36): 9498-502, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25044527

RESUMO

A real-time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li-ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high-capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA